In Vitro and In Vivo Methods for Analysis of Nanoparticle Potential to Induce Delayed-Type Hypersensitivity Reactions

  • Timothy M. Potter
  • Barry W. Neun
  • Marina A. DobrovolskaiaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1682)


Delayed-type hypersensitivity (DTH) reactions are among the common reasons for drug withdrawal from clinical use during the post-marketing stage. Several in vivo methods have been developed to test DTH responses in animal models. They include the local lymph node assay (LLNA) and local lymph node proliferation assay (LLNP). While LLNA is instrumental in testing topically administered formulations (e.g., creams), the LLNP was proven to be predictive of drug-mediated DTH in response to small molecule pharmaceuticals. Global efforts in reducing the use of research animals lead to the development of in vitro models to predict test-material-mediated DTH. Two such models include analysis of surface marker expression in human cell lines THP-1 and U-937. These tests are known as the human cell line activation test (hCLAT) and myeloid U937 skin sensitization test (MUSST or U-SENS), respectively. Here we describe experimental procedures for all these methods, discuss their in vitro–in vivo correlation, and suggest a strategy for applying these tests to analyze engineered nanomaterials and nanotechnology-formulated drug products.

Key words

Nanoparticles Hypersensitivity Leukocyte proliferation Sensitizer Allergen Irritant LLNA LLNP hCLAT MUSST 



This project has been funded in whole or in part by federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.


  1. 1.
    Dobrovolskaia MA, McNeil SE (2013) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172(2):456–466. doi: 10.1016/j.jconrel.2013.05.025 CrossRefPubMedGoogle Scholar
  2. 2.
    Sakaguchi H, Ryan C, Ovigne JM, Schroeder KR, Ashikaga T (2010) Predicting skin sensitization potential and inter-laboratory reproducibility of a human cell line activation test (h-CLAT) in the European Cosmetics Association (COLIPA) ring trials. Toxicol In Vitro 24(6):1810–1820. doi: 10.1016/j.tiv.2010.05.012 CrossRefPubMedGoogle Scholar
  3. 3.
    Weaver JL, Chapdelaine JM, Descotes J, Germolec D, Holsapple M, House R, Lebrec H, Meade J, Pieters R, Hastings KL, Dean JH (2005) Evaluation of a lymph node proliferation assay for its ability to detect pharmaceuticals with potential to cause immune-mediated drug reactions. J Immunotoxicol 2(1):11–20. doi: 10.1080/15476910590930100 CrossRefPubMedGoogle Scholar
  4. 4.
    Bauch C, Kolle SN, Fabian E, Pachel C, Ramirez T, Wiench B, Wruck CJ, van Ravenzwaay B, Landsiedel R (2011) Intralaboratory validation of four in vitro assays for the prediction of the skin sensitizing potential of chemicals. Toxicol In Vitro 25(6):1162–1168. doi: 10.1016/j.tiv.2011.05.030 CrossRefPubMedGoogle Scholar
  5. 5.
    Nukada Y, Ashikaga T, Miyazawa M, Hirota M, Sakaguchi H, Sasa H, Nishiyama N (2012) Prediction of skin sensitization potency of chemicals by human cell line activation test (h-CLAT) and an attempt at classifying skin sensitization potency. Toxicol In Vitro 26(7):1150–1160. doi: 10.1016/j.tiv.2012.07.001 CrossRefPubMedGoogle Scholar
  6. 6.
    Natsch A, Ryan CA, Foertsch L, Emter R, Jaworska J, Gerberick F, Kern P (2013) A dataset on 145 chemicals tested in alternative assays for skin sensitization undergoing prevalidation. J Appl Toxicol 33(11):1337–1352. doi: 10.1002/jat.2868 PubMedGoogle Scholar
  7. 7.
    Piroird C, Ovigne JM, Rousset F, Martinozzi-Teissier S, Gomes C, Cotovio J, Alepee N (2015) The myeloid U937 skin sensitization test (U-SENS) addresses the activation of dendritic cell event in the adverse outcome pathway for skin sensitization. Toxicol In Vitro 29(5):901–916. doi: 10.1016/j.tiv.2015.03.009 CrossRefPubMedGoogle Scholar
  8. 8.
    Urbisch D, Mehling A, Guth K, Ramirez T, Honarvar N, Kolle S, Landsiedel R, Jaworska J, Kern PS, Gerberick F, Natsch A, Emter R, Ashikaga T, Miyazawa M, Sakaguchi H (2015) Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul Toxicol Pharmacol 71(2):337–351. doi: 10.1016/j.yrtph.2014.12.008 CrossRefPubMedGoogle Scholar
  9. 9.
    Sakaguchi H, Ashikaga T, Miyazawa M, Yoshida Y, Ito Y, Yoneyama K, Hirota M, Itagaki H, Toyoda H, Suzuki H (2006) Development of an in vitro skin sensitization test using human cell lines; human cell line activation test (h-CLAT). II An inter-laboratory study of the h-CLAT. Toxicol In Vitro 20(5):774–784. doi: 10.1016/j.tiv.2005.10.014 CrossRefPubMedGoogle Scholar
  10. 10.
    Ashikaga T, Yoshida Y, Hirota M, Yoneyama K, Itagaki H, Sakaguchi H, Miyazawa M, Ito Y, Suzuki H, Toyoda H (2006) Development of an in vitro skin sensitization test using human cell lines: the human cell line activation test (h-CLAT). I Optimization of the h-CLAT protocol. Toxicol In Vitro 20(5):767–773. doi: 10.1016/j.tiv.2005.10.012 CrossRefPubMedGoogle Scholar
  11. 11.
    Sakaguchi H, Ashikaga T, Miyazawa M, Kosaka N, Ito Y, Yoneyama K, Sono S, Itagaki H, Toyoda H, Suzuki H (2009) The relationship between CD86/CD54 expression and THP-1 cell viability in an in vitro skin sensitization test--human cell line activation test (h-CLAT). Cell Biol Toxicol 25(2):109–126. doi: 10.1007/s10565-008-9059-9 CrossRefPubMedGoogle Scholar
  12. 12.
    Miyazawa M, Ito Y, Yoshida Y, Sakaguchi H, Suzuki H (2007) Phenotypic alterations and cytokine production in THP-1 cells in response to allergens. Toxicol In Vitro 21(3):428–437. doi: 10.1016/j.tiv.2006.10.005 CrossRefPubMedGoogle Scholar
  13. 13.
    Yoshida Y, Sakaguchi H, Ito Y, Okuda M, Suzuki H (2003) Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line. Toxicol In Vitro 17(2):221–228. doi:S0887233303000067 [pii]CrossRefPubMedGoogle Scholar
  14. 14.
    Ball N, Gordon N, Casal E, Parish J (2011) Evaluation of auto bi-level algorithm to treat pressure intolerance in obstructive sleep apnea. Sleep Breath 15(3):301–309. doi: 10.1007/s11325-010-0381-0 CrossRefPubMedGoogle Scholar
  15. 15.
    Aeby P, Ashikaga T, Bessou-Touya S, Schepky A, Gerberick F, Kern P, Marrec-Fairley M, Maxwell G, Ovigne JM, Sakaguchi H, Reisinger K, Tailhardat M, Martinozzi-Teissier S, Winkler P (2010) Identifying and characterizing chemical skin sensitizers without animal testing: Colipa's research and method development program. Toxicol In Vitro 24(6):1465–1473. doi: 10.1016/j.tiv.2010.07.005 CrossRefPubMedGoogle Scholar
  16. 16.
    Maxwell G, Aeby P, Ashikaga T, Bessou-Touya S, Diembeck W, Gerberick F, Kern P, Marrec-Fairley M, Ovigne JM, Sakaguchi H, Schroeder K, Tailhardat M, Teissier S, Winkler P (2011) Skin sensitisation: the Colipa strategy for developing and evaluating non-animal test methods for risk assessment. ALTEX 28(1):50–55CrossRefPubMedGoogle Scholar
  17. 17.
    Luebke R (2012) Immunotoxicant screening and prioritization in the twenty-first century. Toxicol Pathol 40(2):294–299. doi: 10.1177/0192623311427572 CrossRefPubMedGoogle Scholar
  18. 18.
    Mittar T, Parambar R, McIntyre C (2011) Flow cytometry and high-content imaging to identify markers of monocyte-macrophage differentiation. Application Note URL: Last accessed 8/10/2017

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Timothy M. Potter
    • 1
  • Barry W. Neun
    • 1
  • Marina A. Dobrovolskaia
    • 1
    Email author
  1. 1.Cancer Research Technology Program, Nanotechnology Characterization LaboratoryLeidos Biomedical Research, Inc., Frederick National Laboratory for Cancer ResearchFrederickUSA

Personalised recommendations