Analysis of Nanoparticle-Adjuvant Properties In Vivo

  • Barry W. Neun
  • Marina A. DobrovolskaiaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1682)


Nanoparticles can be engineered for targeted antigen delivery to the immune cells and for stimulating the immune response to improve the antigen immunogenicity. This approach is commonly used to develop nanotechnology-based vaccines. In addition, some nanotechnology platforms may be initially designed for drug delivery, but in the course of subsequent characterization, their additional immunomodulatory functions may be discovered that can potentially benefit vaccine efficacy. In both of these scenarios, an in vivo proof of concept study to verify the utility of the nanocarrier for improving vaccine efficacy is needed. Here, we describe an experimental approach and considerations for designing an animal study to test adjuvant properties of engineered nanomaterials in vivo.

Key words

Nanoparticles Vaccines Adjuvant Antigen Antibody 



This project has been funded in whole or in part by federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.


  1. 1.
    Xiang SD, Scalzo-Inguanti K, Minigo G, Park A, Hardy CL, Plebanski M (2008) Promising particle-based vaccines in cancer therapy. Expert Rev Vaccines 7(7):1103–1119. doi: 10.1586/14760584.7.7.1103 CrossRefPubMedGoogle Scholar
  2. 2.
    Xiang SD, Selomulya C, Ho J, Apostolopoulos V, Plebanski M (2010) Delivery of DNA vaccines: an overview on the use of biodegradable polymeric and magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(3):205–218. doi: 10.1002/wnan.88 CrossRefPubMedGoogle Scholar
  3. 3.
    Fifis T, Mottram P, Bogdanoska V, Hanley J, Plebanski M (2004) Short peptide sequences containing MHC class I and/or class II epitopes linked to nano-beads induce strong immunity and inhibition of growth of antigen-specific tumour challenge in mice. Vaccine 23(2):258–266CrossRefPubMedGoogle Scholar
  4. 4.
    Pavelic K, Hadzija M, Bedrica L, Pavelic J, Dikic I, Katic M, Kralj M, Bosnar MH, Kapitanovic S, Poljak-Blazi M, Krizanac S, Stojkovic R, Jurin M, Subotic B, Colic M (2001) Natural zeolite clinoptilolite: new adjuvant in anticancer therapy. J Mol Med 78(12):708–720CrossRefPubMedGoogle Scholar
  5. 5.
    Walsh MC, Banas JA, Mudzinski SP, Preissler MT, Graziano RF, Gosselin EJ (2003) A two-component modular approach for enhancing T-cell activation utilizing a unique anti-FcgammaRI-streptavidin construct and microspheres coated with biotinylated-antigen. Biomol Eng 20(1):21–33CrossRefPubMedGoogle Scholar
  6. 6.
    Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, McKenzie IF, Plebanski M (2004) Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173(5):3148–3154CrossRefPubMedGoogle Scholar
  7. 7.
    Minigo G, Scholzen A, Tang CK, Hanley JC, Kalkanidis M, Pietersz GA, Apostolopoulos V, Plebanski M (2007) Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine 25(7):1316–1327. doi: 10.1016/j.vaccine.2006.09.086 CrossRefPubMedGoogle Scholar
  8. 8.
    Mottram P, Leong D, Crimeen-Irwin B, Gloster S, Xiang SD, Meanger J, Ghildyal R, Vardaxis N, Plebanski M (2007) Type 1 and type 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm 4(1):73–84. doi: 10.1021/mp060096p CrossRefPubMedGoogle Scholar
  9. 9.
    Tighe H, Corr M, Roman M, Raz E (1998) Gene vaccination: plasmid DNA is more than just a blueprint. Immunol Today 19(2):89–97. doi: 10.1016/s0167-5699(97)01201-2 CrossRefPubMedGoogle Scholar
  10. 10.
    Weiss R, Scheiblhofer S, Freund J, Ferreira F, Livey I, Thalhamer J (2002) Gene gun bombardment with gold particles displays a particular Th2-promoting signal that over-rules the Th1-inducing effect of immunostimulatory CpG motifs in DNA vaccines. Vaccine 20(25–26):3148–3154. doi: 10.1016/s0264-410x(02)00250-5 CrossRefPubMedGoogle Scholar
  11. 11.
    O’Hagan DT, MacKichan ML, Singh M (2001) Recent developments in adjuvants for vaccines against infectious diseases. Biomol Eng 18(3):69–85CrossRefPubMedGoogle Scholar
  12. 12.
    Franca A, Aggarwal P, Barsov EV, Kozlov SV, Dobrovolskaia MA, Gonzalez-Fernandez A (2011) Macrophage scavenger receptor A mediates the uptake of gold colloids by macrophages in vitro. Nanomedicine (Lond) 6(7):1175–1188. doi: 10.2217/nnm.11.41 CrossRefGoogle Scholar
  13. 13.
    Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38(5):1404–1413CrossRefPubMedGoogle Scholar
  14. 14.
    Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP, Lee LK, Swartz MA, Hubbell JA (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25(10):1159–1164CrossRefPubMedGoogle Scholar
  15. 15.
    Aoyama Y, Kanamori T, Nakai T, Sasaki T, Horiuchi S, Sando S, Niidome T (2003) Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. J Am Chem Soc 125(12):3455–3457CrossRefPubMedGoogle Scholar
  16. 16.
    Nakai T, Kanamori T, Sando S, Aoyama Y (2003) Remarkably size-regulated cell invasion by artificial viruses. Saccharide-dependent self-aggregation of glycoviruses and its consequences in glycoviral gene delivery. J Am Chem Soc 125(28):8465–8475CrossRefPubMedGoogle Scholar
  17. 17.
    Wang J, Fu L, Gu F, Ma Y (2011) Notch1 is involved in migration and invasion of human breast cancer cells. Oncol Rep 26(5):1295–1303. doi: 10.3892/or.2011.1399 PubMedGoogle Scholar
  18. 18.
    Rettig L, Haen SP, Bittermann AG, von Boehmer L, Curioni A, Krämer SD, Knuth A, Pascolo S (2010) Particle size and activation threshold: a new dimension of danger signaling. Blood 115(22):4533–4541. doi: 10.1182/blood-2009-11-247817 CrossRefPubMedGoogle Scholar
  19. 19.
    Foged C, Brodin B, Frokjaer S, Sundblad A (2005) Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 298:315–322. doi: 10.1016/j.ijpharm.2005.03.035 CrossRefPubMedGoogle Scholar
  20. 20.
    Villanueva A, Cañete M, Roca AG, Calero M, Veintemillas-Verdaguer S, Serna CJ, Morales Mdel P, Miranda R (2009) The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20(11):115103. doi: 10.1088/0957-4484/20/11/115103 CrossRefPubMedGoogle Scholar
  21. 21.
    Thiele L, Merkle HP, Walter E (2003) Phagocytosis and phagosomal fate of surface-modified microparticles in dendritic cells and macrophages. Pharm Res 20(2):221–228CrossRefPubMedGoogle Scholar
  22. 22.
    Little SR, Lynn DM, Ge Q, Anderson DG, Puram SV, Chen J, Eisen HN, Langer R (2004) Poly-beta amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc Natl Acad Sci U S A 101(26):9534–9539CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP, Walter E (2001) Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J Control Release 76(1-2):59–71CrossRefPubMedGoogle Scholar
  24. 24.
    Jilek S, Merkle HP, Walter E (2005) DNA-loaded biodegradable microparticles as vaccine delivery systems and their interaction with dendritic cells. Adv Drug Deliv Rev 57(3):377–390. doi: 10.1016/j.addr.2004.09.010 CrossRefPubMedGoogle Scholar
  25. 25.
    Jilek S, Ulrich M, Merkle HP, Walter E (2004) Composition and surface charge of DNA-loaded microparticles determine maturation and cytokine secretion in human dendritic cells. Pharm Res 21(7):1240–1247CrossRefPubMedGoogle Scholar
  26. 26.
    Singh M, Briones M, Ott G, O’Hagan D (2000) Cationic microparticles: a potent delivery system for DNA vaccines. Proc Natl Acad Sci U S A 97(2):811–816CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fesenkova V (2013) Nanoparticles and dendritic cells. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engineered nanomaterials. World Scientific Publishing Ltd., SingaporeGoogle Scholar
  28. 28.
    Xiang SD, Fuchsberger M, JKarlson TDL, Hardy CL, Selomulya C, Plebanski M (2013) Nanoparticles, immunomodulation and vaccine delivery. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engineered nanomaterials. World Scientific Publishing Ltd., SingaporeGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Cancer Research Technology Program, Nanotechnology Characterization LaboratoryLeidos Biomedical Research, Inc., Frederick National Laboratory for Cancer ResearchFrederickUSA

Personalised recommendations