Skip to main content

Methods for Analysis of Nanoparticle Immunosuppressive Properties In Vitro and In Vivo

  • Protocol
  • First Online:
Characterization of Nanoparticles Intended for Drug Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1682))

Abstract

Adverse drug effects on the immune system function represent a significant concern in the pharmaceutical industry, because 10–20% of the drug withdrawal from the market is accounted to immunotoxicity. Immunosuppression is one such adverse effect. The traditional immune function test used to estimate materials’ immunosuppression is a T-cell-dependent antibody response (TDAR). This method involves a 28 day in vivo study evaluating the animal’s antibody titer to a known antigen (KLH) with and without challenge. Due to the limited quantities of novel drug candidates, an in vitro method called human leukocyte activation (HuLa) assay has been developed to substitute the traditional TDAR assay during early preclinical development. In this test, leukocytes isolated from healthy donors vaccinated with the current year’s flu vaccine are incubated with Fluzone in the presence or absence of a test material. The antigen-specific leukocyte proliferation is then measured by ELISA analyzing incorporation of BrdU into DNA of the proliferating cells. Here, we describe the experimental procedures for investigating immunosuppressive properties of nanoparticles by both TDAR and HuLa assays, discuss the in vitro–in vivo correlation of these methods, and show a case study using the iron oxide nanoparticle formulation, Feraheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilke RA, Lin DW, Roden DM, Watkins PB, Flockhart D, Zineh I, Giacomini KM, Krauss RM (2007) Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov 6(11):904–916. doi:10.1038/nrd2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smith DA, Schmid EF (2006) Drug withdrawals and the lessons within. Curr Opin Drug Discov Devel 9(1):38–46

    CAS  PubMed  Google Scholar 

  3. Wysowski DK, Nourjah P (2004) Analyzing prescription drugs as causes of death on death certificates. Public Health Rep 119(6):520. doi:10.1016/j.phr.2004.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wysowski DK, Swartz L (2005) Adverse drug event surveillance and drug withdrawals in the United States, 1969-2002: the importance of reporting suspected reactions. Arch Intern Med 165(12):1363–1369. doi:10.1001/archinte.165.12.1363

    Article  PubMed  Google Scholar 

  5. Tyner K, Sadrieh N (2011) Considerations when submitting nanotherapeutics to FDA/CDER for regulatory review. Methods Mol Biol 697:17–31. doi:10.1007/978-1-60327-198-1_3

    Article  CAS  PubMed  Google Scholar 

  6. Tyner KM, Zou P, Yang X, Zhang H, Cruz CN, Lee SL (2015) Product quality for nanomaterials: current U.S. experience and perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(5):640–654. doi:10.1002/wnan.1338

    Article  PubMed  Google Scholar 

  7. Bancos S, Tyner K, Weaver JL (2013) Immunotoxicity testing for drug–nanoparticle conjugates: regulatory considerations. In: Dobrovolskaia MA, SE MN (eds) Handbook of immunological properties of engineered nanomaterials. World Scientific Publishing, Singapore

    Google Scholar 

  8. Dobrovolskaia MA, Germolec DR, Weaver JL (2009) Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol 4(7):411–414. doi:10.1038/nnano.2009.175

    Article  CAS  PubMed  Google Scholar 

  9. Collinge M, Cole SH, Schneider PA, Donovan CB, Kamperschroer C, Kawabata TT (2010) Human lymphocyte activation assay: an in vitro method for predictive immunotoxicity testing. J Immunotoxicol 7(4):357–366. doi:10.3109/1547691x.2010.523881

    Article  CAS  PubMed  Google Scholar 

  10. Shen CC, Liang HJ, Wang CC, Liao MH, Jan TR (2011) A role of cellular glutathione in the differential effects of iron oxide nanoparticles on antigen-specific T cell cytokine expression. Int J Nanomedicine 6:2791–2798. doi:10.2147/ijn.s25588

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen CC, Liang HJ, Wang CC, Liao MH, Jan TR (2012) Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity. Int J Nanomedicine 7:2729–2737. doi:10.2147/ijn.s31054

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen CC, Wang CC, Liao MH, Jan TR (2011) A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice. Int J Nanomedicine 6:1229–1235. doi:10.2147/ijn.s21019

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dobrovolskaia MA, McNeil SE (2013) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172(2):456–466. doi:10.1016/j.jconrel.2013.05.025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This project has been funded in whole or in part by federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina A. Dobrovolskaia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Potter, T.M., Neun, B.W., Dobrovolskaia, M.A. (2018). Methods for Analysis of Nanoparticle Immunosuppressive Properties In Vitro and In Vivo. In: McNeil, S. (eds) Characterization of Nanoparticles Intended for Drug Delivery. Methods in Molecular Biology, vol 1682. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7352-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7352-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7350-7

  • Online ISBN: 978-1-4939-7352-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics