Analysis of Complement Activation by Nanoparticles

  • Barry W. Neun
  • Anna N. Ilinskaya
  • Marina A. DobrovolskaiaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1682)


The complement system is a group of proteins, which function in plasma to assist the innate immunity in rapid clearance of pathogens. The complement system also contributes to coordination of the adaptive immune response. Complement Activation Related Pseudo Allergy or CARPA is a life-threatening condition commonly reported with certain types of drugs and nanotechnology-based combination products. While CARPA symptoms are similar to that of anaphylaxis, the mechanism behind this pathology does not involve IgE and is mediated by the complement system. In vitro assays using serum or plasma derived from healthy donor volunteers correlate with the in vivo complement-mediated reactions, and therefore are helpful in understanding the propensity of a given drug formulation to cause CARPA in patients. In the first edition of this book, we have described an in vitro method for qualitative assessment of the complement activation by nanomaterials using western blotting. Herein, we present a similar method utilizing enzyme-linked immunoassay for quantitative analysis of the complement activation, and we compare the performance of this approach to that of the qualitative western blotting technique. The revised chapter also includes new details about nanoparticle sample preparation.

Key words

Nanoparticles Complement Anaphylaxis C3 Western blot Immunoassay EIA 



This project has been funded in whole or in part by federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.


  1. 1.
    Calame DG, Mueller-Ortiz SL, Wetsel RA (2016) Innate and adaptive immunologic functions of complement in the host response to Listeria monocytogenes infection. Immunobiology 221(12):1407–1417. doi: 10.1016/j.imbio.2016.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Szebeni J, Fishbane S, Hedenus M, Howaldt S, Locatelli F, Patni S, Rampton D, Weiss G, Folkersen J (2015) Hypersensitivity to intravenous iron: classification, terminology, mechanisms and management. Br J Pharmacol 172(21):5025–5036. doi: 10.1111/bph.13268 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Szebeni J, Storm G (2015) Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs. Biochem Biophys Res Commun 468(3):490–497. doi: 10.1016/j.bbrc.2015.06.177 CrossRefPubMedGoogle Scholar
  4. 4.
    Rampton D, Folkersen J, Fishbane S, Hedenus M, Howaldt S, Locatelli F, Patni S, Szebeni J, Weiss G (2014) Hypersensitivity reactions to intravenous iron: guidance for risk minimization and management. Haematologica 99(11):1671–1676. doi: 10.3324/haematol.2014.111492 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Szebeni J (2014) Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Mol Immunol 61(2):163–173. doi: 10.1016/j.molimm.2014.06.038 CrossRefPubMedGoogle Scholar
  6. 6.
    Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O'Neil CP, Lee LK, Swartz MA, Hubbell JA (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25(10):1159–1164. doi: 10.1038/nbt1332 CrossRefPubMedGoogle Scholar
  7. 7.
    Moghimi SM, Wibroe PP, Szebeni J, Hunter AC (2013) Surfactant-mediated complement activation in beagle dogs. Int Immunopharmacol 17(1):33–34. doi: 10.1016/j.intimp.2013.05.012 CrossRefPubMedGoogle Scholar
  8. 8.
    Szebeni J, Muggia F, Gabizon A, Barenholz Y (2011) Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev 63(12):1020–1030. doi: 10.1016/j.addr.2011.06.017 CrossRefPubMedGoogle Scholar
  9. 9.
    Shen L, Engelhardt JA, Hung G, Yee J, Kikkawa R, Matson J, Tayefeh B, Machemer T, Giclas PC, Henry SP (2016) Effects of repeated complement activation associated with chronic treatment of Cynomolgus monkeys with 2′-O-Methoxyethyl modified antisense oligonucleotide. Nucleic Acid Ther 26(4):236–249. doi: 10.1089/nat.2015.0584 CrossRefPubMedGoogle Scholar
  10. 10.
    Shen L, Frazer-Abel A, Reynolds PR, Giclas PC, Chappell A, Pangburn MK, Younis H, Henry SP (2014) Mechanistic understanding for the greater sensitivity of monkeys to antisense oligonucleotide-mediated complement activation compared with humans. J Pharmacol Exp Ther 351(3):709–717. doi: 10.1124/jpet.114.219378 CrossRefPubMedGoogle Scholar
  11. 11.
    Henry SP, Beattie G, Yeh G, Chappel A, Giclas P, Mortari A, Jagels MA, Kornbrust DJ, Levin AA (2002) Complement activation is responsible for acute toxicities in rhesus monkeys treated with a phosphorothioate oligodeoxynucleotide. Int Immunopharmacol 2(12):1657–1666CrossRefPubMedGoogle Scholar
  12. 12.
    Chanan-Khan A, Szebeni J, Savay S, Liebes L, Rafique NM, Alving CR, Muggia FM (2003) Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil®): possible role in hypersensitivity reactions. Ann Oncol 14(9):1430–1437CrossRefPubMedGoogle Scholar
  13. 13.
    Vonarbourg A, Passirani C, Saulnier P, Simard P, Leroux JC, Benoit JP (2006) Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A 78(3):620–628. doi: 10.1002/jbm.a.30711 CrossRefPubMedGoogle Scholar
  14. 14.
    Bartlett DW, Davis ME (2007) Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug Chem 18(2):456–468. doi: 10.1021/bc0603539 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nagayama S, Ogawara K, Fukuoka Y, Higaki K, Kimura T (2007) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342(1–2):215–221. doi: 10.1016/j.ijpharm.2007.04.036 CrossRefPubMedGoogle Scholar
  16. 16.
    Al-Hanbali O, Rutt KJ, Sarker DK, Hunter AC, Moghimi SM (2006) Concentration dependent structural ordering of poloxamine 908 on polystyrene nanoparticles and their modulatory role on complement consumption. J Nanosci Nanotechnol 6(9–10):3126–3133CrossRefPubMedGoogle Scholar
  17. 17.
    Bertholon I, Vauthier C, Labarre D (2006) Complement activation by core-shell poly(isobutylcyanoacrylate)-polysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide. Pharm Res 23(6):1313–1323. doi: 10.1007/s11095-006-0069-0 CrossRefPubMedGoogle Scholar
  18. 18.
    Xu Y, Ma M, Ippolito GC, Schroeder HW Jr, Carroll MC, Volanakis JE (2001) Complement activation in factor D-deficient mice. Proc Natl Acad Sci U S A 98(25):14577–14582. doi: 10.1073/pnas.261428398 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Szebeni J, Bedocs P, Rozsnyay Z, Weiszhar Z, Urbanics R, Rosivall L, Cohen R, Garbuzenko O, Bathori G, Toth M, Bunger R, Barenholz Y (2012) Liposome-induced complement activation and related cardiopulmonary distress in pigs: factors promoting reactogenicity of Doxil and AmBisome. Nanomedicine 8(2):176–184. doi: 10.1016/j.nano.2011.06.003 CrossRefPubMedGoogle Scholar
  20. 20.
    Szebeni J, Baranyi L, Savay S, Milosevits J, Bunger R, Laverman P, Metselaar JM, Storm G, Chanan-Khan A, Liebes L, Muggia FM, Cohen R, Barenholz Y, Alving CR (2002) Role of complement activation in hypersensitivity reactions to doxil and hynic PEG liposomes: experimental and clinical studies. J Liposome Res 12(1–2):165–172. doi: 10.1081/lpr-120004790 CrossRefPubMedGoogle Scholar
  21. 21.
    Dobrovolskaia MA, McNeil SE (2013) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172(2):456–466. doi: 10.1016/j.jconrel.2013.05.025 CrossRefPubMedGoogle Scholar
  22. 22.
    Neun BW, Dobrovolskaia MA (2011) Qualitative analysis of total complement activation by nanoparticles. Methods Mol Biol 697:237–245. doi: 10.1007/978-1-60327-198-1_25 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Barry W. Neun
    • 1
  • Anna N. Ilinskaya
    • 1
  • Marina A. Dobrovolskaia
    • 1
    Email author
  1. 1.Cancer Research Technology Program, Nanotechnology Characterization LaboratoryLeidos Biomedical Research, Inc., Frederick National Laboratory for Cancer ResearchFrederickUSA

Personalised recommendations