Assessing NLRP3 Inflammasome Activation by Nanoparticles

  • Bhawna Sharma
  • Christopher B. McLeland
  • Timothy M. Potter
  • Stephan T. Stern
  • Pavan P. AdiseshaiahEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1682)


NLRP3 inflammasome activation is one of the initial steps in an inflammatory cascade against pathogen/danger-associated molecular patterns (PAMPs/DAMPs), such as those arising from environmental toxins or nanoparticles, and is essential for innate immune response. NLRP3 inflammasome activation in cells can lead to the release of IL-1β cytokine via caspase-1, which is required for inflammatory-induced programmed cell death (pyroptosis). Nanoparticles are commonly used as vaccine adjuvants and drug delivery vehicles to improve the efficacy and reduce the toxicity of chemotherapeutic agents. Several studies indicate that different nanoparticles (e.g., liposomes, polymer-based nanoparticles) can induce NLRP3 inflammasome activation. Generation of a pro-inflammatory response is beneficial for vaccine delivery to provide adaptive immunity, a necessary step for successful vaccination. However, similar immune responses for intravenously injected, drug-containing nanoparticles can result in immunotoxicity (e.g., silica nanoparticles). Evaluation of NLRP3-mediated inflammasome activation by nanoparticles may predict pro-inflammatory responses in order to determine if these effects may be mitigated for drug delivery or optimized for vaccine development. In this protocol, we outline steps to monitor the release of IL-1β using PMA-primed THP-1 cells, a human monocytic leukemia cell line, as a model system. IL-1β release is used as a marker of NLRP3 inflammasome activation.

Key words

Inflammasome NLRP3 Nanoparticles IL-1β THP-1 



This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.


  1. 1.
    Guo H, Callaway JB, Ting JPY (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21(7):677–687. doi: 10.1038/nm.3893 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lund ME, To J, O'Brien BA, Donnelly S (2016) The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. J Immunol Methods 430:64–70. doi: 10.1016/j.jim.2016.01.012 CrossRefPubMedGoogle Scholar
  3. 3.
    Kim M-G, Park JY, Shon Y, Kim G, Shim G, Oh Y-K (2014) Nanotechnology and vaccine development. Asian J Pharm Sci 9(5):227–235. CrossRefGoogle Scholar
  4. 4.
    Sharma D, Kanneganti TD (2016) The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol 213(6):617–629. doi: 10.1083/jcb.201602089 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20(3):319–325CrossRefPubMedGoogle Scholar
  6. 6.
    Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440(7081):228–232. doi: 10.1038/nature04515 CrossRefPubMedGoogle Scholar
  7. 7.
    Meunier E, Coste A, Olagnier D, Authier H, Lefèvre L, Dardenne C, Bernad J, Béraud M, Flahaut E, Pipy B (2012) Double-walled carbon nanotubes trigger IL-1β release in human monocytes through Nlrp3 inflammasome activation. Nanomed Nanotechnol Biol Med 8(6):987–995Google Scholar
  8. 8.
    Luo Y.-H, Chang L.W, Lin P (2015) Metal-Based Nanoparticles and the Immune System: Activation, Inflammation, and Potential Applications. BioMed Res Int 2015:1–12Google Scholar
  9. 9.
    Okada M, Matsuzawa A, Yoshimura A, Ichijo H (2014) The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation. J Biol Chem 289(47):32926–32936. doi: 10.1074/jbc.M114.579961 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yaron JR, Gangaraju S, Rao MY, Kong X, Zhang L, Su F, Tian Y, Glenn HL, Meldrum DR (2015) K(+) regulates Ca(2+) to drive inflammasome signaling: dynamic visualization of ion flux in live cells. Cell Death Dis 6:e1954. doi: 10.1038/cddis.2015.277 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176(7):3877–3883CrossRefPubMedGoogle Scholar
  12. 12.
    Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10(3):210–215. doi: 10.1038/nri2725 CrossRefPubMedGoogle Scholar
  13. 13.
    Cullen SP, Kearney CJ, Clancy DM, Martin SJ (2015) Diverse activators of the NLRP3 inflammasome promote IL-1beta secretion by triggering necrosis. Cell Rep 11(10):1535–1548. doi: 10.1016/j.celrep.2015.05.003 CrossRefPubMedGoogle Scholar
  14. 14.
    Neumann S, Burkert K, Kemp R, Rades T, Rod Dunbar P, Hook S (2014) Activation of the NLRP3 inflammasome is not a feature of all particulate vaccine adjuvants. Immunol Cell Biol 92:535–542. 2014/04/02 edn. doi: 10.1038/icb.2014.21 CrossRefPubMedGoogle Scholar
  15. 15.
    Kusaka T, Nakayama M, Nakamura K, Ishimiya M, Furusawa E, Ogasawara K (2014) Effect of silica particle size on macrophage inflammatory responses. PLoS One 9(3):e92634. doi: 10.1371/journal.pone.0092634 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Reed SG, Orr MT, Fox CB (2013) Key roles of adjuvants in modern vaccines. Nat Med 19(12):1597–1608. doi: 10.1038/nm.3409 CrossRefPubMedGoogle Scholar
  17. 17.
    Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157(5):1013–1022. doi: 10.1016/j.cell.2014.04.007 CrossRefPubMedGoogle Scholar
  18. 18.
    van der Zande M, Vandebriel RJ, Groot MJ, Kramer E, Herrera Rivera ZE, Rasmussen K, Ossenkoppele JS, Tromp P, Gremmer ER, Peters RJ, Hendriksen PJ, Marvin HJ, Hoogenboom RL, Peijnenburg AA, Bouwmeester H (2014) Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol 11(1):8. doi: 10.1186/1743-8977-11-8 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Neun BW, Dobrovolskaia MA (2011) Detection and quantitative evaluation of endotoxin contamination in nanoparticle formulations by LAL-based assays. Methods Mol Biol 697:121–130. doi: 10.1007/978-1-60327-198-1_12 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Bhawna Sharma
    • 1
  • Christopher B. McLeland
    • 1
  • Timothy M. Potter
    • 1
  • Stephan T. Stern
    • 1
  • Pavan P. Adiseshaiah
    • 1
    Email author
  1. 1.Cancer Research Technology Program, Nanotechnology Characterization LaboratoryLeidos Biomedical Research, Inc., Frederick National Laboratory for Cancer ResearchFrederickUSA

Personalised recommendations