Advertisement

In Vitro Analysis of Nanoparticle Effects on the Zymosan Uptake by Phagocytic Cells

  • Timothy M. Potter
  • Sarah L. Skoczen
  • Jamie C. Rodriguez
  • Barry W. Neun
  • Anna N. Ilinskaya
  • Edward Cedrone
  • Marina A. DobrovolskaiaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1682)

Abstract

This chapter provides a protocol for analysis of nanoparticle effects on the function of phagocytic cells. The protocol relies on luminol chemiluminescence to detect zymosan uptake. Zymosan is an yeast particle which is typically eliminated by phagocytic cells via the complement receptor pathway. The luminol, co-internalized with zymosan, is processed inside the phagosome to generate a chemiluminescent signal. If a test nanoparticle affects the phagocytic function of the cell, the amount of phagocytosed zymosan and, proportionally, the level of generated chemiluminescent signal change. Comparing the zymosan uptake of untreated cells with that of cells exposed to a nanoparticle provides information about the nanoparticle’s effects on the normal phagocytic function. This method has been described previously and is presented herein with several changes. The revised method includes details about nanoparticle concentration selection, updated experimental procedure, and examples of the method performance.

Key words

Nanoparticle Phagocytosis Immunosuppression Zymosan A 

Notes

Acknowledgment

This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

References

  1. 1.
    Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623. doi: 10.1146/annurev.immunol.17.1.593 CrossRefPubMedGoogle Scholar
  2. 2.
    Skoczen SL, Potter TM, Dobrovolskaia MA (2011) In vitro analysis of nanoparticle uptake by macrophages using chemiluminescence. Methods Mol Biol 697:255–261. doi: 10.1007/978-1-60327-198-1_27 CrossRefPubMedGoogle Scholar
  3. 3.
    Antonini JM, Van Dyke K, Ye Z, DiMatteo M, Reasor MJ (1994) Introduction of luminol-dependent chemiluminescence as a method to study silica inflammation in the tissue and phagocytic cells of rat lung. Environ Health Perspect 102(Suppl 10):37–42CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH (2000) 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18(3–4):301–313CrossRefPubMedGoogle Scholar
  5. 5.
    Leroux JC, Gravel P, Balant L, Volet B, Anner BM, Allemann E, Doelker E, Gurny R (1994) Internalization of poly(D,L-lactic acid) nanoparticles by isolated human leukocytes and analysis of plasma proteins adsorbed onto the particles. J Biomed Mater Res 28(4):471–481. doi: 10.1002/jbm.820280410 CrossRefPubMedGoogle Scholar
  6. 6.
    França A, Aggarwal P, Barsov EV, Kozlov SV, Dobrovolskaia MA, Gonzalez-Fernandez A (2011) Macrophage scavenger receptor a mediates the uptake of gold colloids by macrophages in vitro. Nanomedicine (Lond) 6(7):1175–1188. doi: 10.2217/nnm.11.41 CrossRefGoogle Scholar
  7. 7.
    Dobrovolskaia MA, McNeil SE (2013) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172(2):456–466. doi: 10.1016/j.jconrel.2013.05.025 CrossRefPubMedGoogle Scholar
  8. 8.
    Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC (1978) Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Natl Acad Sci U S A 75(5):2458–2462CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Timothy M. Potter
    • 1
  • Sarah L. Skoczen
    • 1
  • Jamie C. Rodriguez
    • 1
  • Barry W. Neun
    • 1
  • Anna N. Ilinskaya
    • 1
  • Edward Cedrone
    • 1
  • Marina A. Dobrovolskaia
    • 1
    Email author
  1. 1.Cancer Research Technology Program, Nanotechnology Characterization LaboratoryLeidos Biomedical Research, Inc., Frederick National Laboratory for Cancer ResearchFrederickUSA

Personalised recommendations