In Vitro Assessment of Nanoparticle Effects on Blood Coagulation

  • Timothy M. Potter
  • Jamie C. Rodriguez
  • Barry W. Neun
  • Anna N. Ilinskaya
  • Edward Cedrone
  • Marina A. DobrovolskaiaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1682)


Blood clotting is a complex process which involves both cellular and biochemical components. The key cellular players in the blood clotting process are thrombocytes or platelets. Other cells, including leukocytes and endothelial cells, contribute to clotting by expressing the so-called pro-coagulant activity (PCA) complex on their surface. The biochemical component of blood clotting is represented by the plasma coagulation cascade, which includes plasma proteins also known as coagulation factors. The coordinated interaction between platelets, leukocytes, endothelial cells, and plasma coagulation factors is necessary for maintaining hemostasis and for preventing excessive bleeding. Undesirable activation of all or some of these components may lead to pathological blood coagulation and life-threatening conditions such as consumptive coagulopathy or disseminated intravascular coagulation (DIC). In contrast, unintended inhibition of the coagulation pathways may lead to hemorrhage. Thrombogenicity is the property of a test material to induce blood coagulation by affecting one or more elements of the clotting process. Anticoagulant activity refers to the property of a test material to inhibit coagulation. The tendency to cause platelet aggregation, perturb plasma coagulation, and induce leukocyte PCA can serve as an in vitro measure of a nanomaterial’s likelihood to be pro- or anticoagulant in vivo. This chapter describes three procedures for in vitro analyses of platelet aggregation, plasma coagulation time, and activation of leukocyte PCA. Platelet aggregation and plasma coagulation procedures have been described earlier. The revision here includes updated details about nanoparticle sample preparation, selection of nanoparticle concentration for the in vitro study, and updated details about assay controls. The chapter is expanded to describe a method for the leukocyte PCA analysis and case studies demonstrating the performance of these in vitro assays.

Key words

Nanoparticles Thrombogenicity Platelet aggregation Platelet Blood Plasma coagulation Coagulation factors Leukocyte procoagulant activity Thrombosis Disseminated intravascular coagulation DIC 



This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.


  1. 1.
    Koziara JM, Oh JJ, Akers WS, Ferraris SP, Mumper RJ (2005) Blood compatibility of cetyl alcohol/Polysorbate-based nanoparticles. Pharm Res 22(11):1821–1828. doi: 10.1007/s11095-005-7547-7 CrossRefPubMedGoogle Scholar
  2. 2.
    Barbui T, Falanga A (2001) Disseminated intravascular coagulation in acute leukemia. Semin Thromb Hemost 27(6):593–604. doi: 10.1055/s-2001-18865 CrossRefPubMedGoogle Scholar
  3. 3.
    Franchini M, Di Minno MN, Coppola A (2010) Disseminated intravascular coagulation in hematologic malignancies. Semin Thromb Hemost 36(4):388–403. doi: 10.1055/s-0030-1254048 CrossRefPubMedGoogle Scholar
  4. 4.
    Higuchi T, Toyama D, Hirota Y, Isoyama K, Mori H, Niikura H, Yamada K, Omine M (2005) Disseminated intravascular coagulation complicating acute lymphoblastic leukemia: a study of childhood and adult cases. Leuk Lymphoma 46(8):1169–1176. doi: 10.1080/10428190500102662 CrossRefPubMedGoogle Scholar
  5. 5.
    Levi M (2000) Cancer and DIC. Haemostasis 31(Suppl 1):47–48Google Scholar
  6. 6.
    Levi M (2009) Disseminated intravascular coagulation in cancer patients. Best Pract Res Clin Haematol 22(1):129–136. doi: 10.1016/j.beha.2008.12.005 CrossRefPubMedGoogle Scholar
  7. 7.
    Uchiumi H, Matsushima T, Yamane A, Doki N, Irisawa H, Saitoh T, Sakura T, Jimbo T, Handa H, Tsukamoto N, Karasawa M, Miyawaki S, Murakami H, Nojima Y (2007) Prevalence and clinical characteristics of acute myeloid leukemia associated with disseminated intravascular coagulation. Int J Hematol 86(2):137–142. doi: 10.1532/ijh97.06173 CrossRefPubMedGoogle Scholar
  8. 8.
    Napoleone E, Zurlo F, Latella MC et al (2009) Paclitaxel downregulates tissue factor in cancer and host tumour-associated cells. Eur J Cancer 45(3):470–477. doi: 10.1016/j.ejca.2008.10.014 CrossRefPubMedGoogle Scholar
  9. 9.
    Swystun LL, Shin LY, Beaudin S, Liaw PC (2009) Chemotherapeutic agents doxorubicin and epirubicin induce a procoagulant phenotype on endothelial cells and blood monocytes. J Thromb Haemost 7(4):619–626. doi: 10.1111/j.1538-7836.2009.03300.x CrossRefPubMedGoogle Scholar
  10. 10.
    Khemani RG, Bart RD, Alonzo TA, Hatzakis G, Hallam D, Newth CJ (2009) Disseminated intravascular coagulation score is associated with mortality for children with shock. Intensive Care Med 35(2):327–333. doi: 10.1007/s00134-008-1280-8 CrossRefPubMedGoogle Scholar
  11. 11.
    Lando PA, Edgington TS (1985) Lymphoid procoagulant response to bacterial endotoxin in the rat. Infect Immun 50(3):660–666PubMedPubMedCentralGoogle Scholar
  12. 12.
    Oh D, Jang MJ, Lee SJ, Chong SY, Kang MS, Wada H (2010) Evaluation of modified non-overt DIC criteria on the prediction of poor outcome in patients with sepsis. Thromb Res 126(1):18–23. doi: 10.1016/j.thromres.2009.12.008 CrossRefPubMedGoogle Scholar
  13. 13.
    Slofstra SH, ten Cate H, Spek CA (2006) Low dose endotoxin priming is accountable for coagulation abnormalities and organ damage observed in the Shwartzman reaction. A comparison between a single-dose endotoxemia model and a double-hit endotoxin-induced Shwartzman reaction. Thromb J 4(13). doi: 10.1186/1477-9560-4-13
  14. 14.
    Fibach E, Treves A, Korenberg A, Rachmilewitz EA (1985) In vitro generation of procoagulant activity by leukemic promyelocytes in response to cytotoxic drugs. Am J Hematol 20(3):257–265CrossRefPubMedGoogle Scholar
  15. 15.
    Gralnick HR, Abrell E (1973) Studies of the procoagulant and fibrinolytic activity of promyelocytes in acute promyelocytic leukaemia. Br J Haematol 24(1):89–99CrossRefPubMedGoogle Scholar
  16. 16.
    Hiller E, Saal JG, Ostendorf P, Griffiths GW (1977) The procoagulant activity of human granulocytes, lymphocytes and monocytes stimulated by endotoxin. Coagulation and electron microscopic studies. Klin Wochenschr 55(15):751–757CrossRefPubMedGoogle Scholar
  17. 17.
    Kwaan HC, Wang J, Boggio LN (2002) Abnormalities in hemostasis in acute promyelocytic leukemia. Hematol Oncol 20(1):33–41CrossRefPubMedGoogle Scholar
  18. 18.
    Stein E, McMahon B, Kwaan H, Altman JK, Frankfurt O, Tallman MS (2009) The coagulopathy of acute promyelocytic leukaemia revisited. Best Pract Res Clin Haematol 22(1):153–163. doi: 10.1016/j.beha.2008.12.007 CrossRefPubMedGoogle Scholar
  19. 19.
    ten Cate H, Falanga A (2008) Overview of the postulated mechanisms linking cancer and thrombosis. Pathophysiol Haemost Thromb 36(3-4):122–130. doi: 10.1159/000175150 CrossRefPubMedGoogle Scholar
  20. 20.
    ten Cate H, Falanga A (2008) The pathophysiology of cancer and thrombosis. Summary and conclusions. Pathophysiol Haemost Thromb 36(3–4):212–214. doi: 10.1159/000175159 PubMedGoogle Scholar
  21. 21.
    Walsh J, Wheeler HR, Geczy CL (1992) Modulation of tissue factor on human monocytes by cisplatin and adriamycin. Br J Haematol 81(4):480–488CrossRefPubMedGoogle Scholar
  22. 22.
    Wheeler HR, Geczy CL (1990) Induction of macrophage procoagulant expression by cisplatin, daunorubicin and doxorubicin. Int J Cancer 46(4):626–632CrossRefPubMedGoogle Scholar
  23. 23.
    Dobrovolskaia MA, Patri AK, Potter TM, Rodriguez JC, Hall JB, McNeil SE (2012) Dendrimer-induced leukocyte procoagulant activity depends on particle size and surface charge. Nanomedicine (Lond) 7(2):245–256. doi: 10.2217/nnm.11.105 CrossRefGoogle Scholar
  24. 24.
    Dobrovolskaia MA, Patri AK, Simak J, Hall JB, Semberova J, De Paoli Lacerda SH, McNeil SE (2012) Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol Pharm 9(3):382–393. doi: 10.1021/mp200463e CrossRefPubMedGoogle Scholar
  25. 25.
    Dobrovolskaia MA, McNeil SE (2013) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172(2):456–466. doi: 10.1016/j.jconrel.2013.05.025 CrossRefPubMedGoogle Scholar
  26. 26.
    Li WJ, Sha M, Ma W, Zhang ZP, Wu YJ, Shi DM (2016) Efficacy evaluation of D-dimer and modified criteria in overt and nonovert disseminated intravascular coagulation diagnosis. Int J Lab Hematol 38(2):151–159. doi: 10.1111/ijlh.12467 CrossRefPubMedGoogle Scholar
  27. 27.
    Neun BW, Dobrovolskaia MA (2011) Method for in vitro analysis of nanoparticle thrombogenic properties. Methods Mol Biol 697:225–235. doi: 10.1007/978-1-60327-198-1_24 CrossRefPubMedGoogle Scholar
  28. 28.
    HHS FDA/CDER/CVM. Bioanalytical method validation. Guidance for industry. May 2001. BP.
  29. 29.
    Beckman Coulter Z series User manual # 991 4591-D, section A8.4.2Google Scholar
  30. 30.
    STArt4 Standard Operating procedure and Training manual. Diagnostica Stago, cat#26987, June 2002Google Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Timothy M. Potter
    • 1
  • Jamie C. Rodriguez
    • 1
  • Barry W. Neun
    • 1
  • Anna N. Ilinskaya
    • 1
  • Edward Cedrone
    • 1
  • Marina A. Dobrovolskaia
    • 1
    Email author
  1. 1.Cancer Research Technology Program¸ Nanotechnology Characterization LaboratoryLeidos Biomedical Research, Inc., Frederick National Laboratory for Cancer ResearchFrederickUSA

Personalised recommendations