Skip to main content

Overview of Fluorescence Lifetime Measurements in Flow Cytometry

  • Protocol
  • First Online:
Flow Cytometry Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1678))

Abstract

The focus of this chapter is time-resolved flow cytometry, which is broadly defined as the ability to measure the timing of fluorescence decay from excited fluorophores that pass through cytometers or high-throughput cell counting and cell sorting instruments. We focus on this subject for two main reasons: first, to discuss the nuances of hardware and software modifications needed for these measurements because currently, there are no widespread time-resolved cytometers nor a one-size-fits-all approach; and second, to summarize the application space for fluorescence lifetime-based cell counting/sorting owing to the recent increase in the number of investigators interested in this approach. Overall, this chapter is structured into three sections: (1) theory of fluorescence decay kinetics, (2) modern time-resolved flow cytometry systems, and (3) cell counting and sorting applications. These commentaries are followed by conclusions and discussion about new directions and opportunities for fluorescence lifetime measurements in flow cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinkamp JA, Yoshida TM, Martin JC (1993) Flow cytometer for resolving signals from heterogeneous fluorescence emissions and quantifying lifetime in fluorochrome-labeled cells/particles by phase-sensitive detection. Rev Sci Instrum 64(12):3440–3450

    Article  CAS  Google Scholar 

  2. Lakowicz JR, Szmacinski H (1993) Fluorescence lifetime-based sensing of pH, Ca 2+, K+ and glucose. Sens Actuators B Chem 11(1):133–143

    Article  CAS  Google Scholar 

  3. Pinsky BG, Ladasky JJ, Lakowicz JR, Berndt K, Hoffman RA (1993) Phase-resolved fluorescence lifetime measurements for flow cytometry. Cytometry A 14(2):123–135

    Article  CAS  Google Scholar 

  4. Steinkamp JA, Crissman HA (1993) Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase-sensitive flow cytometry. Cytometry A 14(2):210–216

    Article  CAS  Google Scholar 

  5. Lakowicz JR (2013) Principles of fluorescence spectroscopy. Springer Science & Business Media, New York

    Google Scholar 

  6. Deka C, Sklar LA, Steinkamp JA (1994) Fluorescence lifetime measurements in a flow cytometer by amplitude demodulation using digital data acquisition technique. Cytometry A 17(1):94–101

    Article  CAS  Google Scholar 

  7. Steinkamp JA, Keij JF (1999) Fluorescence intensity and lifetime measurement of free and particle-bound fluorophore in a sample stream by phase-sensitive flow cytometry. Rev Sci Instrum 70(12):4682–4688

    Article  CAS  Google Scholar 

  8. Steinkamp JA, Lehnert BE, Lehnert NM (1999) Discrimination of damaged/dead cells by propidium iodide uptake in immunofluorescently labeled populations analyzed by phase-sensitive flow cytometry. J Immunol Methods 226(1):59–70

    Article  CAS  Google Scholar 

  9. Houston JP, Naivar MA, Freyer JP (2010) Digital analysis and sorting of fluorescence lifetime by flow cytometry. Cytometry A 77(9):861–872

    Article  Google Scholar 

  10. Sands B, Jenkins P, Peria WJ, Naivar M, Houston JP, Brent R (2014) Measuring and sorting cell populations expressing isospectral fluorescent proteins with different fluorescence lifetimes. PLoS One 9(10):e109940

    Article  Google Scholar 

  11. Cao R, Pankayatselvan V, Houston JP (2013) Cytometric sorting based on the fluorescence lifetime of spectrally overlapping signals. Opt Express 21(12):14816–14831

    Article  CAS  Google Scholar 

  12. Gohar AV, Cao R, Jenkins P, Li W, Houston JP, Houston KD (2013) Subcellular localization-dependent changes in EGFP fluorescence lifetime measured by time-resolved flow cytometry. Biomed Opt Express 4(8):1390–1400

    Article  Google Scholar 

  13. Jenkins P, Naivar MA, Houston JP (2015) Toward the measurement of multiple fluorescence lifetimes in flow cytometry: maximizing multi-harmonic content from cells and microspheres. J Biophotonics 8(11–12):908–917. doi:10.1002/jbio.201400115

    Article  CAS  Google Scholar 

  14. Nedbal J, Visitkul V, Ortiz-Zapater E, Weitsman G, Chana P, Matthews DR, Ng T, Ameer-Beg SM (2015) Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening. Cytometry A 87(2):104–118

    Article  Google Scholar 

  15. Okabe K, Inada N, Gota C, Harada Y, Funatsu T, Uchiyama S (2012) Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat Commun 3:705

    Article  Google Scholar 

  16. Deka C, Lehnert BE, Lehnert NM, Jones GM, Sklar LA, Steinkamp JA (1996) Analysis of fluorescence lifetime and quenching of FITC-conjugated antibodies on cells by phase-sensitive flow cytometry. Cytometry A 25(3):271–279

    Article  CAS  Google Scholar 

  17. Gopich IV, Szabo A (2012) Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proc Natl Acad Sci U S A 109(20):7747–7752

    Article  CAS  Google Scholar 

  18. Sailer BL, Valdez JG, Steinkamp JA, Darzynkiewicz Z, Crissman HA (1997) Monitoring uptake of ellipticine and its fluorescence lifetime in relation to the cell cycle phase by flow cytometry. Exp Cell Res 236(1):259–267

    Article  CAS  Google Scholar 

  19. Steinkamp JA, Valdez YE, Lehnert BE (2000) Flow cytometric, phase-resolved fluorescence measurement of propidium iodide uptake in macrophages containing phagocytized fluorescent microspheres. Cytometry 39(1):45–55

    Article  CAS  Google Scholar 

  20. Sailer BL, Nastasi AJ, Valdez JG, Steinkamp JA, Crissman HA (1997) Differential effects of deuterium oxide on the fluorescence lifetimes and intensities of dyes with different modes of binding to DNA. J Histochem Cytochem 45(2):165–175

    Article  CAS  Google Scholar 

  21. Sailer BL, Nastasi AJ, Valdez JG, Steinkamp JA, Crissman HA (1996) Interactions of intercalating fluorochromes with DNA analyzed by conventional and fluorescence lifetime flow cytometry utilizing deuterium oxide. Cytometry A 25(2):164–172

    Article  CAS  Google Scholar 

  22. Sailer BL, Steinkamp JA, Crissman HA (1997) Flow cytometric fluorescence lifetime analysis of DNA-binding probes. Eur J Histochem 42:19–27

    Google Scholar 

  23. Sailer BL, Valdez JG, Steinkamp JA, Crissman HA (1998) Apoptosis induced with different cycle-perturbing agents produces differential changes in the fluorescence lifetime of DNA-bound ethidium bromide. Cytometry A 31(3):208–216

    Article  CAS  Google Scholar 

  24. Keij JF, Bell-Prince C, Steinkamp JA (1999) Simultaneous analysis of relative DNA and glutathione content in viable cells by phase-resolved flow cytometry. Cytometry A 35(1):48–54

    Article  CAS  Google Scholar 

  25. Steinkamp JA (2001) Time-resolved fluorescence measurements. Curr Protc Cytom:1.15. 11–11.15. 16

    Google Scholar 

  26. Cui HH, Valdez JG, Steinkamp JA, Crissman HA (2003) Fluorescence lifetime-based discrimination and quantification of cellular DNA and RNA with phase-sensitive flow cytometry. Cytometry A 52(1):46–55. doi:10.1002/cyto.a.10022

    Article  Google Scholar 

  27. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94(2):L14–L16. doi:10.1529/biophysj.107.120154

    Article  CAS  Google Scholar 

  28. Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, Ramanujam N (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A 104(49):19494–19499. doi:10.1073/pnas.0708425104

    Article  CAS  Google Scholar 

  29. Periasamy A, Elangovan M, Elliott E, Brautigan DL (2002) Fluorescence lifetime imaging (FLIM) of green fluorescent fusion proteins in living cells. Methods Mol Biol 183:89–100. doi:10.1385/1-59259-280-5:089

    CAS  Google Scholar 

  30. Chen Y, Mills JD, Periasamy A (2003) Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71(9–10):528–541. doi:10.1111/j.1432-0436.2003.07109007.x

    Article  CAS  Google Scholar 

  31. Sun Y, Periasamy A (2015) Localizing protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Methods Mol Biol 1251:83–107. doi:10.1007/978-1-4939-2080-8_6

    Article  CAS  Google Scholar 

  32. Lubbeck JL, Dean KM, Ma H, Palmer AE, Jimenez R (2012) Microfluidic flow cytometer for quantifying photobleaching of fluorescent proteins in cells. Anal Chem 84(9):3929–3937

    Article  CAS  Google Scholar 

  33. Manna P, Jimenez R (2015) Time and frequency-domain measurement of ground-state recovery times in red fluorescent proteins. J Phys Chem B 119(15):4944–4954

    Article  CAS  Google Scholar 

  34. Boens N, Qin W, Basarić N, Hofkens J, Ameloot M, Pouget J, Lefèvre J-P, Valeur B, Gratton E, van de Ven M, Silva ND, Engelborghs Y, Willaert K, Sillen A, Rumbles G, Phillips D, AJWG V, van Hoek A, Lakowicz JR, Malak H, Gryczynski I, Szabo AG, Krajcarski DT, Tamai N, Miura A (2007) Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal Chem 79(5):2137–2149. doi:10.1021/ac062160k

    Article  CAS  Google Scholar 

  35. Becker W (2012) Fluorescence lifetime imaging–techniques and applications. J Microsc 247(2):119–136

    Article  CAS  Google Scholar 

  36. Houston JP, Naivar MA, Jenkins P, Freyer JP (2012) Capture of fluorescence decay times by flow cytometry. Curr Protoc Cytom:1.25.1–1.25.21

    Google Scholar 

  37. Steinkamp JA, Crissman HA (1993) Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase-sensitive flow cytometry. Cytometry 14(2):210–216

    Article  CAS  Google Scholar 

  38. Pinsky BG, Ladasky JJ, Lakowicz JR, Berndt K, Hoffman RA (1993) Phase-resolved fluorescence lifetime measurements for flow cytometry. Cytometry 14(2):123–135

    Article  CAS  Google Scholar 

  39. Steinkamp JA (1994) Phase-sensitive detection methods for resolving fluorescence emission signals and directly quantifying lifetime. Methods Cell Biol 42:627

    Article  CAS  Google Scholar 

  40. Deka C, Cram LS, Habbersett R, Martin JC, Sklar LA, Steinkamp JA (1995) Simultaneous dual-frequency phase-sensitive flow cytometric measurements for rapid identification of heterogeneous fluorescence decays in fluorochrome-labeled cells and particles. Cytometry A 21(4):318–328

    Article  CAS  Google Scholar 

  41. Keij JF, Steinkamp JA (1998) Flow cytometric characterization and classification of multiple dual-color fluorescent microspheres using fluorescence lifetime. Cytometry A 33(3):318–323

    Article  CAS  Google Scholar 

  42. Sailer BL, Nastasi AJ, Valdez JG, Steinkamp JA, Crissman HA (1998) Interactions of intercalating fluorochromes with DNA analyzed by conventional and fluorescence lifetime flow cytometry utilizing deuterium oxide. Cytometry A 25(2):164–172

    Article  Google Scholar 

  43. Jenkins PL, Freyer JP, Naivar MS, Arteaga A, Houston JP (2011) Flow cytometric separation of spectrally overlapping fluorophores using multifrequency fluorescence lifetime analysis. In: SPIE BiOS., 2011. International Society for Optics and Photonics, pp 790216–790218

    Google Scholar 

  44. Stringari C, Cinquin A, Cinquin O, Digman MA, Donovan PJ, Gratton E (2011) Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci U S A 108(33):13582–13587. doi:10.1073/pnas.1108161108

    Article  CAS  Google Scholar 

  45. Colyer RA, Lee C, Gratton E (2008) A novel fluorescence lifetime imaging system that optimizes photon efficiency. Microsc Res Tech 71(3):201–213. doi:10.1002/jemt.20540

    Article  Google Scholar 

  46. Dean KM, Davis LM, Lubbeck JL, Manna P, Palmer AE, Jimenez R (2014) Microfluidic flow cytometer for multiparametric screening of fluorophore photophysics. Opt Soc Am:1–3

    Google Scholar 

  47. Li W, Vacca G, Castillo M, Houston KD, Houston JP (2014) Fluorescence lifetime excitation cytometry by kinetic dithering. Electrophoresis 35(12–13):1846–1854

    Article  CAS  Google Scholar 

  48. Lu Y, Lu J, Zhao J, Cusido J, Raymo FM, Yuan J, Yang S, Leif RC, Huo Y, Piper JA (2014) On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays. Nat Commun 5:3741

    CAS  Google Scholar 

  49. Lu Y, Zhao J, Zhang R, Liu Y, Liu D, Goldys EM, Yang X, Xi P, Sunna A, Lu J (2014) Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photonics 8(1):32–36

    Article  CAS  Google Scholar 

  50. Ding M, Chen D, Ma D, Liu P, Song K, Lu H, Ji Z (2015) Tuning the upconversion luminescence lifetimes of KYb2F7: Ho3+ nanocrystals for optical multiplexing. Chem Phys Chem 16(18):3784–3789

    Article  CAS  Google Scholar 

  51. Cao R, Naivar MA, Wilder M, Houston JP (2014) Expanding the potential of standard flow cytometry by extracting fluorescence lifetimes from cytometric pulse shifts. Cytometry A 85(12):999–1010

    Article  Google Scholar 

  52. Deka C, Steinkamp JA (1996) Time-resolved fluorescence-decay measurement and analysis on single cells by flow cytometry. Appl Opt 35(22):4481–4489

    Article  CAS  Google Scholar 

  53. Steinkamp JA, Keij JF (1998) Fluorescence lifetime measurement of free and cell/particle-bound fluorophore by phase-sensitive flow cytometry. In: BiOS’98 international biomedical optics symposium. International Society for Optics and Photonics, pp 154–161

    Google Scholar 

  54. Steinkamp JA, Lehnert NM, Keij JF, Lehnert BE (1999) Enhanced immunofluorescence measurement resolution of surface antigens on highly autofluorescent, glutaraldehyde-fixed cells analyzed by phase-sensitive flow cytometry. Cytometry A 37(4):275–283

    Article  CAS  Google Scholar 

  55. Tirri ME, Wahlroos R, Meltola NJ, Toivonen J, Hänninen PE (2006) Effect of polystyrene microsphere surface to fluorescence lifetime under two-photon excitation. J Fluoresc 16(6):809–816

    Article  CAS  Google Scholar 

  56. Jin D, Connally R, Piper J (2007) Practical time-gated luminescence flow cytometry. I: Concepts. Cytometry A 71(10):783–796

    Article  Google Scholar 

  57. Jones T, Jenkins P, Houston J (2010) Resolving multiple fluorescence decays from single cytometric events. In: Biomedical optics. Optical Society of America, p BTuD113p

    Google Scholar 

  58. Lu Y, Xi P, Piper JA, Huo Y, Jin D (2012) Time-gated orthogonal scanning automated microscopy (OSAM) for high-speed cell detection and analysis. Sci Rep 2:837

    Article  Google Scholar 

  59. Buschke DG, Resto P, Schumacher N, Cox B, Tallavajhula A, Vivekanandan A, Eliceiri KW, Williams JC, Ogle BM (2012) Microfluidic sorting of microtissues. Biomicrofluidics 6(1):014116

    Article  CAS  Google Scholar 

  60. Dahal E, Cao R, Jenkins P, Houston JP (2014) High-throughput measurement of the long excited-state lifetime of quantum dots in flow cytometry. In: SPIE BiOS. International Society for Optics and Photonics, pp 89470S–89478

    Google Scholar 

  61. Léonard J, Dumas N, Caussé J, Maillot S, Giannakopoulou N, Barre S, Uhring W (2014) High-throughput time-correlated single photon counting. Lab Chip 14(22):4338–4343

    Article  Google Scholar 

  62. Bene L, Szöllősi J (2014) À la Fizeau in flow: Pulse shape-assisted fluorescence lifetime. Cytometry A 85(12):991–994

    Article  Google Scholar 

  63. Dean KM, Davis LM, Lubbeck JL, Manna P, Friis P, Palmer AE, Jimenez R (2015) High-speed multiparameter photophysical analyses of fluorophore libraries. Anal Chem 87(10):5026–5030

    Article  CAS  Google Scholar 

  64. Suzuki M, Sakata I, Sakai T, Tomioka H, Nishigaki K, Tramier M (2015) A high-throughput direct FRET-based assay for analyzing apoptotic proteases using flow cytometry and fluorescence-lifetime measurements. Anal Biochem 491:10

    Article  CAS  Google Scholar 

  65. Sailer BL, Steinkamp JL, Crissman HA (1998) Flow cytometric lifetime analysis of DNA-binding probes. Eur J Histochem 48:19–27

    Google Scholar 

  66. Yang Z, Shcherbakova D, Verkhusha V, Houston J (2016) Developing a time-resolved flow cytometer for fluorescence lifetime measurements of near-infrared fluorescent proteins. In: Conference on lasers and electro-optics CLEO 2016, San Jose, CA. Optical Society of America

    Google Scholar 

  67. Hinde E, Digman MA, Welch C, Hahn KM, Gratton E (2012) Biosensor Förster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy. Microsc Res Tech 75(3):271–281. doi:10.1002/jemt.21054

    Article  Google Scholar 

  68. Chigaev A, Buranda T, Dwyer DC, Prossnitz ER, Sklar LA (2003) FRET detection of cellular α4-integrin conformational activation. Biophys J 85(6):3951–3962. doi:10.1016/S0006-3495(03)74809-7

    Article  CAS  Google Scholar 

  69. Chigaev A, Smagley Y, Haynes MK, Ursu O, Bologa CG, Halip L, Oprea T, Waller A, Carter MB, Zhang Y (2015) FRET detection of lymphocyte function-associated antigen-1 conformational extension. Mol Biol Cell 26(1):43–54

    Article  Google Scholar 

  70. Chigaev A, Blenc AM, Braaten JV, Kumaraswamy N, Kepley CL, Andrews RP, Oliver JM, Edwards BS, Prossnitz ER, Larson RS (2001) Real time analysis of the affinity regulation of α4-integrin the physiologically activated receptor is intermediate in affinity between resting and Mn2+ or antibody activation. J Biol Chem 276(52):48670–48678

    Article  CAS  Google Scholar 

  71. Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A 89(4):1271–1275

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica P. Houston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Houston, J.P., Yang, Z., Sambrano, J., Li, W., Nichani, K., Vacca, G. (2018). Overview of Fluorescence Lifetime Measurements in Flow Cytometry. In: Hawley, T., Hawley, R. (eds) Flow Cytometry Protocols. Methods in Molecular Biology, vol 1678. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7346-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7346-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7344-6

  • Online ISBN: 978-1-4939-7346-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics