Skip to main content

Real-Time Deformability Cytometry: Label-Free Functional Characterization of Cells

  • Protocol
  • First Online:
Flow Cytometry Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1678))

Abstract

Real-time deformability cytometry (RT-DC) is a microfluidic technique that allows to capture and evaluate morphology and rheology of up to 1000 cells/s in a constricted channel. The cells are deformed without mechanical contact by hydrodynamic forces and are quantified in real-time without the need of additional handling or staining procedures. Segmented pictures of the cells are stored and can be used for further analysis. RT-DC is sensitive to alterations of the cytoskeleton, which allows, e.g., to show differences in cell cycle phases, identify different subpopulations in whole blood and to study mechanical stiffening of cells entering a dormant state. The abundance of the obtainable parameters and the interpretation as mechanical readout is an analytical challenge that needs standardization. Here, we will provide guidelines for measuring and post-processing of RT-DC data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shapiro HM (2003) Practical flow cytometry. Wiley, Hoboken. doi:10.1002/0471722731

    Book  Google Scholar 

  2. Green RE, Sosik HM, Olson RJ, DuRand MD (2003) Flow cytometric determination of size and complex refractive index for marine particles: comparison with independent and bulk estimates. Appl Opt 42:526. doi:10.1364/AO.42.000526

    Article  Google Scholar 

  3. Lautenschlager F, Paschke S, Schinkinger S et al (2009) The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc Natl Acad Sci 106:15696–15701. doi:10.1073/pnas.0811261106

    Article  Google Scholar 

  4. Tse JM, Cheng G, Tyrrell JA et al (2012) Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci U S A 109:911–916. doi:10.1073/pnas.1118910109

    Article  CAS  Google Scholar 

  5. Darling EM, Zauscher S, Block JA, Guilak F (2007) A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys J 92:1784–1791. doi:10.1529/biophysj.106.083097

    Article  CAS  Google Scholar 

  6. Guck J, Schinkinger S, Lincoln B et al (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698. doi:10.1529/biophysj.104.045476

    Article  CAS  Google Scholar 

  7. Lekka M, Laidler P, Gil D et al (1999) Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J 28:312–316. doi:10.1007/s002490050213

    Article  CAS  Google Scholar 

  8. Ekpenyong AE, Whyte G, Chalut K et al (2012) Viscoelastic properties of differentiating blood cells are fate- and function-dependent. PLoS One 7:e45237. doi:10.1371/journal.pone.0045237

    Article  CAS  Google Scholar 

  9. Darling EM, Topel M, Zauscher S et al (2008) Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J Biomech 41:454–464. doi:10.1016/j.jbiomech.2007.06.019

    Article  Google Scholar 

  10. Lange JR, Steinwachs J, Kolb T et al (2015) Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties. Biophys J 109:26–34. doi:10.1016/j.bpj.2015.05.029

    Article  CAS  Google Scholar 

  11. Hosseini SM, Feng JJ (2012) How malaria parasites reduce the deformability of infected red blood cells. Biophys J 103:1–10. doi:10.1016/j.bpj.2012.05.026

    Article  CAS  Google Scholar 

  12. Tabeling P (2005) Introduction to microfluidics. Oxford University Press, New York

    Google Scholar 

  13. Rosenbluth MJ, Lam WA, Fletcher DA (2008) Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 8:1062–1070. doi:10.1039/b802931h

    Article  CAS  Google Scholar 

  14. Lange JR, Goldmann WH, Alonso JL (2016) Influence of αvβ3 integrin on the mechanical properties and the morphology of M21 and K562 cells. Biochem Biophys Res Commun 478:1280–1285. doi:10.1016/j.bbrc.2016.08.111

    Article  CAS  Google Scholar 

  15. Byun S, Son S, Amodei D et al (2013) Characterizing deformability and surface friction of cancer cells. Proc Natl Acad Sci 110:7580–7585. doi:10.1073/pnas.1218806110

    Article  CAS  Google Scholar 

  16. Dudani JS, Gossett DR, Tse HTK, Di Carlo D (2013) Pinched-flow hydrodynamic stretching of single-cells. Lab Chip 13:3728. doi:10.1039/c3lc50649e

    Article  CAS  Google Scholar 

  17. Gossett DR, Tse HTK, Lee SA et al (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci 109:7630–7635. doi:10.1073/pnas.1200107109

    Article  CAS  Google Scholar 

  18. Otto O, Rosendahl P, Mietke A et al (2015) Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat Methods 12:199–202. doi:10.1038/nmeth.3281

    Article  CAS  Google Scholar 

  19. Mietke A, Otto O, Girardo S et al (2015) Extracting cell stiffness from real-time deformability cytometry: theory and experiment. Biophys J 109:2023–2036. doi:10.1016/j.bpj.2015.09.006

    Article  CAS  Google Scholar 

  20. Suzuki S, Be K (1985) Topological structural analysis of digitized binary images by border following. Comput Vis Graph Image Process 30:32–46. doi:10.1016/0734-189X(85)90016-7

    Article  Google Scholar 

  21. Bradski G (2000) The OpenCV library. Dr Dobbs J Softw Tools 25:120–126

    Google Scholar 

  22. Mietke A (2014) Theoretical and experimental analysis of cell deformations by hydrodynamic forces in microfluidic channels. Technische Universität Dresden

    Google Scholar 

  23. Herold C (2017) Mapping of deformation to apparent young’s modulus in real-time deformability cytometry. arXiv:1704.00572

    Google Scholar 

  24. Müller P, et al. (2015) ShapeOut: analysis software for real-time deformability cytometry [Software]. Available at https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut

  25. Beer FP, Johnston ER Jr, Mazurek D, Cornwell P (2012) Vector mechanics for engineers: statics and dynamics, 10th edn. McGraw-Hill International, New York

    Google Scholar 

  26. Geoff Olynyk (2012) File Exchange - MATLAB Central – Mathworks. http://de.mathworks.com/matlabcentral/fileexchange/36525-volrevolve/content/volRevolve.m. Accessed 1 Jan 2017

  27. Mokbel M, Mokbel D, Mietke A et al (2017) Numerical simulation of real-time deformability cytometry to extract cell mechanical properties. ACS Biomater Sci Eng. doi:10.1021/acsbiomaterials.6b00558

  28. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  29. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  30. Mood AM, Graybill FA, Boes DC (1974) Introduction to the theory of statistics. McGraw-Hill International, New York

    Google Scholar 

  31. Wilks SS (1938) The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann Math Stat 9:60–62. doi:10.1214/aoms/1177732360

    Article  Google Scholar 

Download references

Acknowledgments

We thank the BIOTEC/CRTD Microstructure Facility (partly funded by the State of Saxony and the European Fund for Regional Development—EFRE) and Dr. Salvatore Girardo for the development and production of the master templates. We acknowledge financial support from the Alexander von Humboldt Foundation (Alexander von Humboldt Professorship to J.G.), the Sächsisches Ministerium für Wissenschaft und Kunst (TG70 grant to O.O. and J.G.), the Bundesministerium für Bildung und Forschung (ZIK grant to O.O. under no. 03Z22CN11), and the European Union’s Seventh Framework Programme under grant agreement no. 632222 (Proof-Of-Concept Grant FastTouch to J.G.).

Conflict of Interest Statement

O.O. is co-founder and CEO of Zellmechanik Dresden distributing the technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Guck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Herbig, M., Kräter, M., Plak, K., Müller, P., Guck, J., Otto, O. (2018). Real-Time Deformability Cytometry: Label-Free Functional Characterization of Cells. In: Hawley, T., Hawley, R. (eds) Flow Cytometry Protocols. Methods in Molecular Biology, vol 1678. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7346-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7346-0_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7344-6

  • Online ISBN: 978-1-4939-7346-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics