Reconstitution of RNA Interference Machinery

  • Shintaro Iwasaki
  • Yukihide TomariEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1680)


Small RNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs), silence protein expression from target mRNAs bearing their complementary sequences, via the formation of the effector complex called RNA-induced silencing complex (RISC). Although the mechanism of RISC assembly has been studied for nearly two decades, the detailed mechanism has still remained unclear in part due to the lack of a pure reconstitution system. Recently, we identified all the core proteins necessary for RISC assembly in flies and successfully recapitulated the assembly of catalytically active RISC with eight recombinant proteins. The reconstitution system provides a versatile framework for detailed studies of RISC assembly, including single molecule analysis as described in another chapter in this issue.

Key words

siRNA miRNA Chaperone Argonaute 



We are grateful to members of Tomari laboratory and Iwasaki laboratory for critical reading of this manuscript. This work is supported by in part by Grants-in-Aid for Scientific Research on Innovative Areas (‘Functional machinery for non-coding RNAs’ 21115002 and ‘Non-coding RNA neo-taxonomy’ 26113007) (to Y.T.), and a Grant-in-Aid for Scientific Research on Innovative Areas (‘nascent chain biology’ JP17H05679) and Grant-in-Aid for Young Scientists (‘Start-up’ 23870004 and ‘A’ JP17H04998) (to S.I.) from The Ministry of Education, Culture, Sports, Science and Technology in Japan.


  1. 1.
    Hock J, Weinmann L, Ender C et al (2007) Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep 8:1052–1060CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Landthaler M, Gaidatzis D, Rothballer A et al (2008) Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14:2580–2596CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Meister G, Landthaler M, Peters L et al (2005) Identification of novel Argonaute-associated proteins. Curr Biol 15:2149–2155CrossRefPubMedGoogle Scholar
  4. 4.
    Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13:3191–3197CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574CrossRefPubMedGoogle Scholar
  6. 6.
    Iki T, Yoshikawa M, Nishikiori M et al (2010) In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell 39:282–291CrossRefPubMedGoogle Scholar
  7. 7.
    Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321CrossRefPubMedGoogle Scholar
  8. 8.
    Kawamata T, Seitz H, Tomari Y (2009) Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat Struct Mol Biol 16:953–960CrossRefPubMedGoogle Scholar
  9. 9.
    Yoda M, Kawamata T, Paroo Z et al (2010) ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol 17:17–23CrossRefPubMedGoogle Scholar
  10. 10.
    Miyoshi T, Takeuchi A, Siomi H, Siomi MC (2010) A direct role for Hsp90 in pre-RISC formation in Drosophila. Nat Struct Mol Biol 17:1024–1026CrossRefPubMedGoogle Scholar
  11. 11.
    Iwasaki S, Kobayashi M, Yoda M et al (2010) Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 39:292–299CrossRefPubMedGoogle Scholar
  12. 12.
    Johnston M, Geoffroy MC, Sobala A, Hay R, Hutvagner G (2010) HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell 21:1462–1469CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kwak PB, Tomari Y (2012) The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat Struct Mol Biol 19:145–151CrossRefPubMedGoogle Scholar
  14. 14.
    Rand TA, Petersen S, Du F, Wang X (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629CrossRefPubMedGoogle Scholar
  15. 15.
    Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620CrossRefPubMedGoogle Scholar
  16. 16.
    Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC (2005) Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19:2837–2848CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Leuschner PJ, Ameres SL, Kueng S, Martinez J (2006) Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 7:314–320CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liu Y, Ye X, Jiang F et al (2009) C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325:750–753CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ye X, Huang N, Liu Y et al (2011) Structure of C3PO and mechanism of human RISC activation. Nat Struct Mol Biol 18:650–657CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Iwasaki S, Sasaki HM, Sakaguchi Y, Suzuki T, Tadakuma H, Tomari Y (2015) Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature 521:533–536CrossRefPubMedGoogle Scholar
  21. 21.
    Smith DF, Toft DO (2008) Minireview: the intersection of steroid receptors with molecular chaperones: observations and questions. Mol Endocrinol 22:2229–2240CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Liu Q, Rand TA, Kalidas S et al (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301:1921–1925CrossRefPubMedGoogle Scholar
  23. 23.
    Liu X, Jiang F, Kalidas S, Smith D, Liu Q (2006) Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA 12:1514–1520CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schirle NT, MacRae IJ (2012) The crystal structure of human Argonaute2. Science 336:1037–1040CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Elkayam E, Kuhn CD, Tocilj A et al (2012) The structure of human Argonaute-2 in complex with miR-20a. Cell 150:100–110CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nakanishi K, Weinberg DE, Bartel DP, Patel DJ (2012) Structure of yeast Argonaute with guide RNA. Nature 486:368–374CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nakanishi K, Ascano M, Gogakos T et al (2013) Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Rep 3:1893–1900CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Faehnle CR, Elkayam E, Haase AD, Hannon GJ, Joshua-Tor L (2013) The making of a slicer: activation of human Argonaute-1. Cell Rep 3:1901–1909CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang Y, Dayalan Naidu S, Samarasinghe K et al (2014) Sulphoxythiocarbamates modify cysteine residues in HSP90 causing degradation of client proteins and inhibition of cancer cell proliferation. Br J Cancer 110:71–82CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Institute of Molecular and Cellular BiosciencesThe University of TokyoTokyoJapan
  2. 2.RNA Systems Biochemistry LaboratoryRIKENWakoJapan

Personalised recommendations