Nucleic Acid-Binding Assay of Argonaute Protein Using Fluorescence Polarization

  • Tomohiro MiyoshiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1680)


Nucleic acid binding by the Argonaute protein is an important trigger step in the Argonaute-dependent gene silencing system. We established an in vitro method to detect the nucleic acid binding activity of the Argonaute protein by fluorescence polarization. In this chapter, we will describe the expression and purification of the prokaryotic (Rhodobacter sphaeroides) Argonaute protein, and the nucleic acid-binding analysis using a Fluorescence Polarization System (Beacon 2000).

Key words

Fluorescence polarization assay Beacon 2000 Rhodobacter sphaeroides argonaute Guide RNA Purification of prokaryotic argonaute 



This work was supported by the JSPS KAKENHI (Grant Numbers: 25840019 and 16K07246), the Takeda Science Foundation, the Naito Foundation, the Sasaki Environment Technology Foundation, and the Union Tool Scholarship Foundation.


  1. 1.
    Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J (2014) The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 21:743–753CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32CrossRefPubMedGoogle Scholar
  3. 3.
    Miyoshi T, Ito K, Murakami R, Uchiumi T (2016) Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute. Nat Commun 7:11846CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA (2013) Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell 51:594–605CrossRefPubMedGoogle Scholar
  5. 5.
    Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC, Kranzusch PJ, Doudna JA (2016) A bacterial Argonaute with noncanonical guide RNA specificity. Proc Natl Acad Sci U S A 113:4057–4062CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJ, van der Oost J (2014) DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507:258–261CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Swarts DC, Hegge JW, Hinojo I, Shiimori M, Ellis MA, Dumrongkulraksa J, Terns RM, Terns MP, van der Oost J (2015) Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res 43:5120–5129CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wong I, Lohman TM (1993) A double-filter method for nitrocellulose-filter binding: application to protein-nucleic acid interactions. Proc Natl Acad Sci U S A 90:5428–5432CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434:666–670CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T, Patel DJ (2005) Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol Cell 19:405–419CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature 456:209–213CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schirle NT, MacRae IJ (2012) The crystal structure of human Argonaute2. Science 336:1037–1040CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Elkayam E, Kuhn CD, Tocilj A, Haase AD, Greene EM, Hannon GJ, Joshua-Tor L (2012) The structure of human argonaute-2 in complex with miR-20a. Cell 150:100–110CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Faehnle CR, Elkayam E, Haase AD, Hannon GJ, Joshua-Tor L (2013) The making of a slicer: activation of human Argonaute-1. Cell Rep 3:1901–1909CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nakanishi K, Ascano M, Gogakos T, Ishibe-Murakami S, Serganov AA, Briskin D, Morozov P, Tuschl T, Patel DJ (2013) Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Rep 3:1893–1900CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Suter SR, Sheu-Gruttadauria J, Schirle NT, Valenzuela R, Ball-Jones AA, Onizuka K, MacRae IJ, Beal PA (2016) Structure-guided control of siRNA off-target effects. J Am Chem Soc 138:8667–8669CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Matsumoto N, Nishimasu H, Sakakibara K, Nishida KM, Hirano T, Ishitani R, Siomi H, Siomi MC, Nureki O (2016) Crystal structure of silkworm PIWI-clade argonaute siwi bound to piRNA. Cell 167:484–497CrossRefPubMedGoogle Scholar
  18. 18.
    Schirle NT, Kinberger GA, Murray HF, Lima WF, Prakash TP, MacRae IJ (2016) Structural analysis of human argonaute-2 bound to a modified siRNA guide. J Am Chem Soc 138:8694–8697CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hur JK, Zinchenko MK, Djuranovic S, Green R (2013) Regulation of Argonaute slicer activity by guide RNA 3′ end interactions with the N-terminal lobe. J Biol Chem 288:7829–7840CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Deerberg A, Willkomm S, Restle T (2013) Minimal mechanistic model of siRNA-dependent target RNA slicing by recombinant human Argonaute 2 protein. Proc Natl Acad Sci U S A 110:17850–17855CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Center for Transdisciplinary ResearchNiigata UniversityNiigataJapan

Personalised recommendations