Kinetic Analysis of Small Silencing RNA Production by Human and Drosophila Dicer Enzymes In Vitro

  • Susan E. Liao
  • Ryuya FukunagaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1680)


Dicer enzymes produce small silencing RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), which then are loaded into Argonaute proteins and act as sequence-specific guides. A powerful tool to understand the molecular mechanism of small silencing RNA production by Dicers is an in vitro RNA processing assay using recombinant Dicer proteins. Such biochemical analyses have elucidated the substrate specificities and kinetics of Dicers, the mechanism by which the length of small RNAs produced by Dicers is determined, and the effects of Dicer-partner proteins and endogenous small molecules such as ATP and inorganic phosphate on small RNA production by Dicers, among others. Here, we describe methods for in vitro small RNA production assay using recombinant human and Drosophila Dicer proteins.

Key words

Dicer miRNA siRNA RNA silencing Kinetics 



This work was supported by a grant from American Heart Association (15SDG23220028), a grant from NIH (R01GM116841), and funds provided by Johns Hopkins School of Medicine Department of Biological Chemistry to RF.


  1. 1.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366CrossRefPubMedGoogle Scholar
  2. 2.
    Hutvagner G et al (2001) A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838CrossRefPubMedGoogle Scholar
  3. 3.
    Ketting RF et al (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15(20):2654–2659CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293(5538):2269–2271CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jiang F et al (2005) Dicer-1 and R3D1-L catalyze microRNA maturation in drosophila. Genes Dev 19(14):1674–1679CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Macrae IJ et al (2006) Structural basis for double-stranded RNA processing by dicer. Science 311(5758):195–198CrossRefPubMedGoogle Scholar
  7. 7.
    Ma E, MacRae IJ, Kirsch JF, Doudna JA (2008) Autoinhibition of human dicer by its internal helicase domain. J Mol Biol 380(1):237–243CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA (2008) In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A 105(2):512–517CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cenik ES et al (2011) Phosphate and R2D2 restrict the substrate specificity of dicer-2, an ATP-driven ribonuclease. Mol Cell 42(2):172–184CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Park JE et al (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475(7355):201–205CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Welker NC et al (2011) Dicer’s helicase domain discriminates dsRNA termini to promote an altered reaction mode. Mol Cell 41(5):589–599CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fukunaga R et al (2012) Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 151(3):533–546CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tsutsumi A, Kawamata T, Izumi N, Seitz H, Tomari Y (2011) Recognition of the pre-miRNA structure by drosophila dicer-1. Nat Struct Mol Biol 18(10):1153–1158CrossRefPubMedGoogle Scholar
  14. 14.
    Lee HY, Doudna JA (2012) TRBP alters human precursor microRNA processing in vitro. RNA 18(11):2012–2019CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fukunaga R, Colpan C, Han BW, Zamore PD (2014) Inorganic phosphate blocks binding of pre-miRNA to dicer-2 via its PAZ domain. EMBO J 33(4):371–384CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sinha NK, Trettin KD, Aruscavage PJ, Bass BL (2015) Drosophila dicer-2 cleavage is mediated by helicase- and dsRNA termini-dependent states that are modulated by loquacious-PD. Mol Cell 58(3):406–417CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lin X et al (2016) Common miR-590 variant rs6971711 present only in African Americans reduces miR-590 biogenesis. PLoS One 11(5):e0156065CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kandasamy SK, Fukunaga R (2016) Phosphate-binding pocket in dicer-2 PAZ domain for high-fidelity siRNA production. Proc Natl Acad Sci U S A 113(49):14031–14036CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kandasamy SK, Zhu L, Fukunaga R (2017) The C-terminal dsRNA-binding domain of Drosophila Dicer-2 is crucial for efficient and high-fidelity production of siRNA and loading of siRNA to Argonaute2. RNA. 23(7):1139–1153. doi: 10.1261/rna.059915.116. Epub 2017 Apr 17. PMID:28416567CrossRefPubMedGoogle Scholar
  20. 20.
    Lee YS et al (2004) Distinct roles for drosophila dicer-1 and dicer-2 in the siRNA/miRNA silencing pathways. Cell 117(1):69–81CrossRefPubMedGoogle Scholar
  21. 21.
    Lau PW et al (2012) The molecular architecture of human dicer. Nat Struct Mol Biol 19(4):436–440CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lau PW, Potter CS, Carragher B, MacRae IJ (2009) Structure of the human dicer-TRBP complex by electron microscopy. Structure 17(10):1326–1332CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang HW et al (2009) Structural insights into RNA processing by the human RISC-loading complex. Nat Struct Mol Biol 16(11):1148–1153CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Taylor DW et al (2013) Substrate-specific structural rearrangements of human dicer. Nat Struct Mol Biol 20(6):662–670CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kao C, Zheng M, Rudisser S (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA 5(9):1268–1272CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of Biological ChemistryJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations