Dumbbell-PCR for Discriminative Quantification of a Small RNA Variant

  • Megumi Shigematsu
  • Shozo Honda
  • Yohei KirinoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1680)


Cellular RNAs are often expressed as multiple isoforms of complex heterogeneity in both length and terminal sequences. IsomiRs, the isoforms of microRNAs, are such an example. Distinct quantification of each RNA variant is necessary to unravel the biogenesis mechanism and biological significance of heterogenetic RNA expression. Here we describe Dumbbell-PCR (Db-PCR), a TaqMan RT-PCR-based method that distinctively quantifies a specific small RNA variant with single-nucleotide resolution at terminal sequences. Db-PCR enables the quantitative analysis of RNA terminal heterogeneity without performing Next-Generation Sequencing.

Key words

Dumbbell-PCR Db-PCR TaqMan qRT-PCR T4 RNA Ligase 2 Small regulatory RNA miRNA isomiR tRNA fragment 



This study was supported by NIH grant (GM106047 to YK).


  1. 1.
    Neilsen CT, Goodall GJ, Bracken CP (2012) IsomiRs–the overlooked repertoire in the dynamic microRNAome. Trends Genet 28(11):544–549. doi: 10.1016/j.tig.2012.07.005. S0168-9525(12)00112-6 [pii]CrossRefPubMedGoogle Scholar
  2. 2.
    Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y, Yuan Y, Ning Z, Hu Y, Menzel C, Hu H, Lachmann M, Zeng R, Chen W, Khaitovich P (2010) MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res 20(9):1207–1218. doi: 10.1101/gr.106849.110. gr.106849.110 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fernandez-Valverde SL, Taft RJ, Mattick JS (2010) Dynamic isomiR regulation in drosophila development. RNA 16(10):1881–1888. doi: 10.1261/rna.2379610. rna.2379610 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bizuayehu TT, Lanes CF, Furmanek T, Karlsen BO, Fernandes JM, Johansen SD, Babiak I (2012) Differential expression patterns of conserved miRNAs and isomiRs during Atlantic halibut development. BMC Genomics 13:11. doi: 10.1186/1471-2164-13-11. 1471-2164-13-11 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tan GC, Chan E, Molnar A, Sarkar R, Alexieva D, Isa IM, Robinson S, Zhang S, Ellis P, Langford CF, Guillot PV, Chandrashekran A, Fisk NM, Castellano L, Meister G, Winston RM, Cui W, Baulcombe D, Dibb NJ (2014) 5′ isomiR variation is of functional and evolutionary importance. Nucleic Acids Res 42(14):9424–9435. doi: 10.1093/nar/gku656. gku656 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Loher P, Londin ER, Rigoutsos I (2014) IsomiR expression profiles in human lymphoblastoid cell lines exhibit population and gender dependencies. Oncotarget 5(18):8790–8802. doi: 10.18632/oncotarget.2405. 2405 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Telonis AG, Loher P, Jing Y, Londin E, Rigoutsos I (2015) Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res 43(19):9158–9175. doi: 10.1093/nar/gkv922. gkv922 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179. doi: 10.1093/nar/gni178. 33/20/e179 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schamberger A, Orban TI (2014) 3′ IsomiR species and DNA contamination influence reliable quantification of microRNAs by stem-loop quantitative PCR. PLoS One 9(8):e106315. doi: 10.1371/journal.pone.0106315. PONE-D-13-49830 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Honda S, Kirino Y (2015) Dumbbell-PCR: a method to quantify specific small RNA variants with a single nucleotide resolution at terminal sequences. Nucleic Acids Res 43(12):e77. doi: 10.1093/nar/gkv218. gkv218 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bullard DR, Bowater RP (2006) Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4. Biochem J 398(1):135–144. doi: 10.1042/BJ20060313. BJ20060313 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nandakumar J, Ho CK, Lima CD, Shuman S (2004) RNA substrate specificity and structure-guided mutational analysis of bacteriophage T4 RNA ligase 2. J Biol Chem 279(30):31337–31347. doi: 10.1074/jbc.M402394200. M402394200 [pii]CrossRefPubMedGoogle Scholar
  13. 13.
    Nandakumar J, Shuman S (2005) Dual mechanisms whereby a broken RNA end assists the catalysis of its repair by T4 RNA ligase 2. J Biol Chem 280(25):23484–23489. doi: 10.1074/jbc.M500831200. M500831200 [pii]CrossRefPubMedGoogle Scholar
  14. 14.
    Ranade K, Chang MS, Ting CT, Pei D, Hsiao CF, Olivier M, Pesich R, Hebert J, Chen YD, Dzau VJ, Curb D, Olshen R, Risch N, Cox DR, Botstein D (2001) High-throughput genotyping with single nucleotide polymorphisms. Genome Res 11(7):1262–1268. doi: 10.1101/gr.157801 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Computational Medicine Center, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Computational Medicine Center, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations