Quantification of miRNAs Co-Immunoprecipitated with Argonaute Proteins Using SYBR Green-Based qRT-PCR

  • Hong-Duc Phan
  • Junan Li
  • Ming PoiEmail author
  • Kotaro NakanishiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1680)


MicroRNAs (miRNAs) are small non-coding RNAs that trigger post-transcriptional gene silencing. These RNAs need to be associated with the Argonaute proteins to be functional. This assembly begins with loading of a miRNA duplex, followed by the ejection of one of the strands (passenger). The remaining strand (guide) together with the Argonaute protein forms a ribonucleoprotein effector complex (the RNA-induced silencing complex, RISC). Mutation on the Argonaute protein, if affecting either step of the RISC assembly, impacts the function of miRNAs. Therefore, any observation of decreased miRNA level of mutants will provide insights into the role of those amino acid residues in the mechanical function of the Argonaute protein. In this chapter, we introduce a method to relatively quantify a specific miRNA co-immunoprecipitated with wild type and mutant Argonaute proteins from HEK293T cells, using Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR). Spiking a synthetic exogenous miRNA as an internal control with RNA extraction prior to cDNA synthesis will normalize the Ct values obtained from the qRT-PCR assays and enable us to quantify the relative level of Argonaute-bound miRNA.

Key words

qRT-PCR miRNA Argonaute Immunoprecipitation SYBR Green 



We thank G. Singh for providing HEK293T cells and reagents for us. This work was supported by the PRESTO from the Japan Science and Technology (JST) Agency (JPMJPR13L7), The Ohio State University Start-up Fund, and The Ohio State University Center for RNA Biology Seed Grant to K.N.


  1. 1.
    Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. doi: 10.1038/nrm3838 CrossRefPubMedGoogle Scholar
  2. 2.
    Chong MM, Zhang G, Cheloufi S, Neubert TA, Hannon GJ, Littman DR (2010) Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev 24(17):1951–1960. doi: 10.1101/gad.1953310 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14(7):447–459. doi: 10.1038/nrg3462 CrossRefPubMedGoogle Scholar
  4. 4.
    Nakanishi K (2016) Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip Rev RNA 7(5):637–660. doi: 10.1002/wrna.1356 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kawamata T, Tomari Y (2010) Making RISC. Trends Biochem Sci 35(7):368–376. doi: 10.1016/j.tibs.2010.03.009 CrossRefPubMedGoogle Scholar
  6. 6.
    Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26(5):611–623. doi: 10.1016/j.molcel.2007.05.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, Luhrmann R, Tuschl T (2005) Identification of novel argonaute-associated proteins. Curr Biol 15(23):2149–2155. doi: 10.1016/j.cub.2005.10.048 CrossRefPubMedGoogle Scholar
  8. 8.
    Hauptmann J, Kater L, Loffler P, Merkl R, Meister G (2014) Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage. RNA 20(10):1532–1538. doi: 10.1261/rna.045203.114 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197. doi: 10.1016/j.molcel.2004.07.007 CrossRefPubMedGoogle Scholar
  10. 10.
    Iwasaki S, Sasaki HM, Sakaguchi Y, Suzuki T, Tadakuma H, Tomari Y (2015) Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature 521(7553):533–536. doi: 10.1038/nature14254 CrossRefPubMedGoogle Scholar
  11. 11.
    Gu S, Jin L, Huang Y, Zhang F, Kay MA (2012) Slicing-independent RISC activation requires the argonaute PAZ domain. Curr Biol 22(16):1536–1542. doi: 10.1016/j.cub.2012.06.040 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rudel S, Wang Y, Lenobel R, Korner R, Hsiao HH, Urlaub H, Patel D, Meister G (2011) Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Res 39(6):2330–2343. doi: 10.1093/nar/gkq1032 CrossRefPubMedGoogle Scholar
  13. 13.
    Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864. doi: 10.1126/science.1065329 CrossRefPubMedGoogle Scholar
  14. 14.
    Damm K, Bach S, Muller KM, Klug G, Burenina OY, Kubareva EA, Grunweller A, Hartmann RK (2015) Improved northern blot detection of small RNAs using EDC crosslinking and DNA/LNA probes. Methods Mol Biol 1296:41–51. doi: 10.1007/978-1-4939-2547-6_5 CrossRefPubMedGoogle Scholar
  15. 15.
    Beckmann BM, Grunweller A, Weber MH, Hartmann RK (2010) Northern blot detection of endogenous small RNAs (approximately14 nt) in bacterial total RNA extracts. Nucleic Acids Res 38(14):e147. doi: 10.1093/nar/gkq437 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44(1):31–38. doi: 10.1016/j.ymeth.2007.09.006 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179. doi: 10.1093/nar/gni178 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kozera B, Rapacz M (2013) Reference genes in real-time PCR. J Appl Genet 54(4):391–406. doi: 10.1007/s13353-013-0173-x CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Beitzinger M, Meister G (2011) Experimental identification of microRNA targets by immunoprecipitation of Argonaute protein complexes. Methods Mol Biol 732:153–167. doi: 10.1007/978-1-61779-083-6_12 CrossRefPubMedGoogle Scholar
  20. 20.
    Loedige I, Gaidatzis D, Sack R, Meister G, Filipowicz W (2013) The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function. Nucleic Acids Res 41(1):518–532. doi: 10.1093/nar/gks1032 CrossRefPubMedGoogle Scholar
  21. 21.
    Hassan T, Smith SG, Gaughan K, Oglesby IK, O'Neill S, McElvaney NG, Greene CM (2013) Isolation and identification of cell-specific microRNAs targeting a messenger RNA using a biotinylated anti-sense oligonucleotide capture affinity technique. Nucleic Acids Res 41(6):e71. doi: 10.1093/nar/gks1466 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39(4):519–525CrossRefPubMedGoogle Scholar
  23. 23.
    Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50(4):298–301. doi: 10.1016/j.ymeth.2010.01.032 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yoda M, Cifuentes D, Izumi N, Sakaguchi Y, Suzuki T, Giraldez AJ, Tomari Y (2013) Poly(A)-specific ribonuclease mediates 3′-end trimming of Argonaute2-cleaved precursor microRNAs. Cell Rep 5(3):715–726. doi: 10.1016/j.celrep.2013.09.029 CrossRefPubMedGoogle Scholar
  25. 25.
    Landthaler M, Gaidatzis D, Rothballer A, Chen PY, Soll SJ, Dinic L, Ojo T, Hafner M, Zavolan M, Tuschl T (2008) Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14(12):2580–2596. doi: 10.1261/rna.1351608 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mahmood T, Yang PC (2012) Western blot: technique, theory, and trouble shooting. N Am J Med Sci 4(9):429–434. doi: 10.4103/1947-2714.100998 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusUSA
  2. 2.Ohio State Biochemistry ProgramColumbusUSA
  3. 3.Division of Pharmacy Practice and Science, College of PharmacyThe Ohio State UniversityColumbusUSA
  4. 4.Center for RNA Biology, The Ohio State UniversityColumbusUSA

Personalised recommendations