Accurate Profiling and Quantification of tRNA Fragments from RNA-Seq Data: A Vade Mecum for MINTmap

  • Phillipe Loher
  • Aristeidis G. Telonis
  • Isidore RigoutsosEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1680)


There is an increasing interest within the scientific community in identifying tRNA-derived fragments (tRFs) and elucidating the roles they play in the cell. Such endeavors can be greatly facilitated by mining the numerous datasets from many cellular contexts that exist publicly. However, the standard mapping tools cannot be used for the purpose. Several factors complicate this endeavor including: the presence of multiple identical or nearly identical isodecoders at various genomic locations; the presence of identical sequence segments that are shared by isodecoders of the same or even different anticodons; the existence of numerous partial tRNA sequences across the genome; the existence of hundreds of “lookalike” sequences that resemble true tRNAs; and others. This is generating a need for specialized tools that can mine deep sequencing data to identify and quantify tRFs. We discuss the various complicating factors and their ramifications, and how to use and run MINTmap, a tool that addresses these considerations.

Key words

Transfer RNA tRNA tRNA-derived fragments tRFs tRF license plate internal tRFs i-tRFs 5′-halves 3′-halves 5′-tRFs tRNA-lookalikes MINTmap MINTsubmit MINTbase MINTcodes 



The project was supported in part by a William Keck Foundation grant (IR), by Institutional Funds, and by a Commonwealth of Pennsylvania grant SAP#4100062221 (IR).


  1. 1.
    Grewal SS (2015) Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth. Biochim Biophys Acta 1849(7):898–907. doi: 10.1016/j.bbagrm.2014.12.005 CrossRefPubMedGoogle Scholar
  2. 2.
    Huang HY, Hopper AK (2016) Multiple layers of stress-induced regulation in tRNA biology. Life 6(2). doi: 10.3390/life6020016
  3. 3.
    Orioli A (2017) tRNA biology in the omics era: stress signalling dynamics and cancer progression. Bioessays 39(3). doi: 10.1002/bies.201600158
  4. 4.
    Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24(17):1832–1860. doi: 10.1101/gad.1956510 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Shigematsu M, Kirino Y (2015) tRNA-derived short non-coding RNA as interacting partners of argonaute proteins. Gene Regul Syst Biol 9:27–33. doi: 10.4137/GRSB.S29411 Google Scholar
  6. 6.
    Anderson P, Ivanov P (2014) tRNA fragments in human health and disease. FEBS Lett 588(23):4297–4304. doi: 10.1016/j.febslet.2014.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Telonis AG, Loher P, Honda S, Jing Y, Palazzo J, Kirino Y, Rigoutsos I (2015) Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. Oncotarget 6(28):24797–24822. doi: 10.18632/oncotarget.4695 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hasler D, Meister G (2016) From tRNA to miRNA: RNA-folding contributes to correct entry into noncoding RNA pathways. FEBS Lett 590(15):2354–2363. doi: 10.1002/1873-3468.12294 CrossRefPubMedGoogle Scholar
  9. 9.
    Goodarzi H, Liu X, Nguyen HC, Zhang S, Fish L, Tavazoie SF (2015) Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161(4):790–802. doi: 10.1016/j.cell.2015.02.053 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gebetsberger J, Wyss L, Mleczko AM, Reuther J, Polacek N (2016) A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol 0:1–10. doi: 10.1080/15476286.2016.1257470 CrossRefGoogle Scholar
  11. 11.
    Alves CS, Vicentini R, Duarte GT, Pinoti VF, Vincentz M, Nogueira FT (2017) Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants. Plant Mol Biol 93(1-2):35–48. doi: 10.1007/s11103-016-0545-9 CrossRefPubMedGoogle Scholar
  12. 12.
    Olvedy M, Scaravilli M, Hoogstrate Y, Visakorpi T, Jenster G, Martens-Uzunova ES (2016) A comprehensive repertoire of tRNA-derived fragments in prostate cancer. Oncotarget 7(17):24766–24777. doi: 10.18632/oncotarget.8293 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Telonis AG, Loher P, Kirino Y, Rigoutsos I (2016) Consequential considerations when mapping tRNA fragments. BMC Bioinformatics 17:123. doi: 10.1186/s12859-016-0921-0 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Honda S, Kirino Y (2015) Dumbbell-PCR: a method to quantify specific small RNA variants with a single nucleotide resolution at terminal sequences. Nucleic Acids Res 43(12):e77. doi: 10.1093/nar/gkv218 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Veneziano D, Di Bella S, Nigita G, Lagana A, Ferro A, Croce CM (2016) Noncoding RNA: current deep sequencing data analysis approaches and challenges. Hum Mutat 37(12):1283–1298. doi: 10.1002/humu.23066 CrossRefPubMedGoogle Scholar
  16. 16.
    Loher P, Telonis AG, Rigoutsos I (2017) MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data. Sci Rep 7:41184. doi: 10.1038/srep41184 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Telonis AG, Loher P, Kirino Y, Rigoutsos I (2014) Nuclear and mitochondrial tRNA-lookalikes in the human genome. Front Genet 5:344. doi: 10.3389/fgene.2014.00344 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bao W, Kojima KK, Kohany O (2015) Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6(1):11. doi: 10.1186/s13100-015-0041-9 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hou YM (2010) CCA addition to tRNA: implications for tRNA quality control. IUBMB Life 62(4):251–260. doi: 10.1002/iub.301 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Heinemann IU, Nakamura A, O'Donoghue P, Eiler D, Soll D (2012) tRNAHis-guanylyltransferase establishes tRNAHis identity. Nucleic Acids Res 40(1):333–344. doi: 10.1093/nar/gkr696 CrossRefPubMedGoogle Scholar
  22. 22.
    Heinemann IU, Randau L, Tomko RJ Jr, Soll D (2010) 3′-5′ tRNAHis guanylyltransferase in bacteria. FEBS Lett 584(16):3567–3572. doi: 10.1016/j.febslet.2010.07.023 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85(8):2444–2448CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  25. 25.
    States DJ, Gish W (1994) Combined use of sequence similarity and codon bias for coding region identification. J Comput Biol 1(1):39–50. doi: 10.1089/cmb.1994.1.39 PubMedGoogle Scholar
  26. 26.
    Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12(4):656–664. doi: 10.1101/gr.229202. Article published online before March 2002CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. doi: 10.1186/gb-2009-10-3-r25 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760. doi: 10.1093/bioinformatics/btp324 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Homer N, Merriman B, Nelson SF (2009) BFAST: an alignment tool for large scale genome resequencing. PLoS One 4(11):e7767. doi: 10.1371/journal.pone.0007767 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    David M, Dzamba M, Lister D, Ilie L, Brudno M (2011) SHRiMP2: sensitive yet practical SHort read mapping. Bioinformatics 27(7):1011–1012. doi: 10.1093/bioinformatics/btr046 CrossRefPubMedGoogle Scholar
  31. 31.
    Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37(Database issue):D93–D97. doi: 10.1093/nar/gkn787 CrossRefPubMedGoogle Scholar
  32. 32.
    Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12. doi: 10.14806/ej.17.1.200 CrossRefGoogle Scholar
  33. 33.
    Mayr C, Bartel DP (2009) Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138(4):673–684. doi: 10.1016/j.cell.2009.06.016 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chan PP, Lowe TM (2016) GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res 44(D1):D184–D189. doi: 10.1093/nar/gkv1309 CrossRefPubMedGoogle Scholar
  35. 35.
    Rigoutsos I (2016) Comment on PMID 26673694:GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. In: PubMed Commons [Internet]. National Library of Medicine, Bethesda, MD.
  36. 36.
    Rao BS, Jackman JE (2015) Life without post-transcriptional addition of G-1: two alternatives for tRNAHis identity in Eukarya. RNA 21(2):243–253. doi: 10.1261/rna.048389.114 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pliatsika V, Loher P, Telonis AG, Rigoutsos I (2016) MINTbase: a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments. Bioinformatics 32(16):2481–2489. doi: 10.1093/bioinformatics/btw194 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kumar P, Mudunuri SB, Anaya J, Dutta A (2015) tRFdb: a database for transfer RNA fragments. Nucleic Acids Res 43(Database issue):D141–D145. doi: 10.1093/nar/gku1138 CrossRefPubMedGoogle Scholar
  39. 39.
    Zheng LL, Xu WL, Liu S, Sun WJ, Li JH, Wu J, Yang JH, Qu LH (2016) tRF2Cancer: a web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Res 44(W1):W185–W193. doi: 10.1093/nar/gkw414 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA package 2.0. Algorithms Mol Biol 6:26. doi: 10.1186/1748-7188-6-26 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Phillipe Loher
    • 1
  • Aristeidis G. Telonis
    • 1
  • Isidore Rigoutsos
    • 1
    Email author
  1. 1.Computational Medicine Center, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations