Functional Analysis of MicroRNAs in Neurogenesis During Mouse Cortical Development

  • Wei Zhang
  • Xiaoxia Zeng
  • Li ZengEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1680)


The advantage of using in utero electroporation is that it can study the gene function during neurodevelopment in vivo. Using functional analysis of a microRNA (miRNA) gene as an example, this protocol describes a set of techniques that are crucial for the success of neurogenesis studies, including mice time mating, plasmid preparation, utero electroporation following miRNA injection into mice embryonic brain ventricle, labeling of proliferating cells with EDU (ethynyldeoxyuridine), cryosectioning, immunofluorescence staining, and confocal microscopic analysis. This chapter also provides detailed technical tips regarding experimental planning, mouse surgery, multi-embryo injection with different plasmids, electroporation, and maintenance of pregnant mother with post-electroporated embryo.

Key words

In utero electroporation MicroRNA Cerebral cortex Immunohistochemistry Neural proliferation Neurogenesis Cortical development 



We thank Dr. Paul Kim and Ms. Neo Yan Zhuang for their technical support. This research was supported by the Singapore Ministry of Health’s National Medical Research Council grant to W. Z and Translational Clinical Research grant to L.Z.


  1. 1.
    Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240(1):237–246. doi: 10.1006/dbio.2001.0439. S0012-1606(01)90439-7 [pii]CrossRefPubMedGoogle Scholar
  2. 2.
    Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103(4):865–872. doi:S0306452201000161 [pii]CrossRefPubMedGoogle Scholar
  3. 3.
    Matsuda T, Cepko CL (2007) Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A 104(3):1027–1032. doi: 10.1073/pnas.0610155104. 0610155104 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    David LS, Aitoubah J, Lesperance LS, Wang LY (2014) Gene delivery in mouse auditory brainstem and hindbrain using in utero electroporation. Mol Brain 7:51. doi: 10.1186/s13041-014-0051-4. s13041-014-0051-4 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen G, Sima J, Jin M, Wang KY, Xue XJ, Zheng W, Ding YQ, Yuan XB (2008) Semaphorin-3A guides radial migration of cortical neurons during development. Nat Neurosci 11(1):36–44. doi: 10.1038/nn2018. nn2018 [pii]CrossRefPubMedGoogle Scholar
  6. 6.
    Sanada K, Tsai LH (2005) G protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122(1):119–131. doi: 10.1016/j.cell.2005.05.009. S0092-8674(05)00454-X [pii]CrossRefPubMedGoogle Scholar
  7. 7.
    Cancedda L, Fiumelli H, Chen K, Poo MM (2007) Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J Neurosci 27(19):5224–5235. doi: 10.1523/JNEUROSCI.5169-06.2007. 27/19/5224 [pii]CrossRefPubMedGoogle Scholar
  8. 8.
    Wang CL, Zhang L, Zhou Y, Zhou J, Yang XJ, Duan SM, Xiong ZQ, Ding YQ (2007) Activity-dependent development of callosal projections in the somatosensory cortex. J Neurosci 27(42):11334–11342. doi: 10.1523/JNEUROSCI.3380-07.2007. 27/42/11334 [pii]CrossRefPubMedGoogle Scholar
  9. 9.
    Huber D, Petreanu L, Ghitani N, Ranade S, Hromadka T, Mainen Z, Svoboda K (2008) Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451(7174):61–64. doi: 10.1038/nature06445. nature06445 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10(5):663–668. doi: 10.1038/nn1891. nn1891 [pii]CrossRefPubMedGoogle Scholar
  11. 11.
    Manent JB, Wang Y, Chang Y, Paramasivam M, LoTurco JJ (2009) Dcx reexpression reduces subcortical band heterotopia and seizure threshold in an animal model of neuronal migration disorder. Nat Med 15(1):84–90. doi: 10.1038/nm.1897. nm.1897 [pii]CrossRefPubMedGoogle Scholar
  12. 12.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. doi:S0092867404000455 [pii]CrossRefPubMedGoogle Scholar
  13. 13.
    Kawahara H, Imai T, Okano H (2012) MicroRNAs in neural stem cells and neurogenesis. Front Neurosci 6:30. doi: 10.3389/fnins.2012.00030 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhang W, Kim PJ, Chen Z, Lokman H, Qiu L, Zhang K, Rozen SG, Tan EK, Je HS, Zeng L (2016) MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. Elife 5. doi: 10.7554/eLife.11324
  15. 15.
    Zhang W, Thevapriya S, Kim PJ, Yu WP, Shawn Je H, King Tan E, Zeng L (2014) Amyloid precursor protein regulates neurogenesis by antagonizing miR-574-5p in the developing cerebral cortex. Nat Commun 5:3330. doi: 10.1038/ncomms4330. ncomms4330 [pii]PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Neural Stem Cell Research Lab, Research DepartmentNational Neuroscience InstituteSingaporeSingapore
  2. 2.Neuroscience and Behavioral Disorders ProgramDUKE-NUS Graduate Medical SchoolSingaporeSingapore

Personalised recommendations