Skip to main content

Biolistic Transformation of Wheat

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1679))

Abstract

The wheat genome encodes some 100,000 genes. To understand how the expression of these genes is regulated it will be necessary to carry out many genetic transformation experiments. Robust protocols that allow scientists to transform a wide range of wheat genotypes are therefore required. In this chapter, we describe a protocol for biolistic transformation of wheat that uses immature embryos and small quantities of DNA cassettes. An original method for DNA cassette purification is also described. This protocol can be used to transform a wide range of wheat genotypes and other related species.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fox JL (2009) Whatever happened to GM wheat? Nat Biotechnol 27:974–976

    Article  CAS  PubMed  Google Scholar 

  2. Cheng M, Fry JE, Pang S et al (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vasil V, Castillo AM, Fromm ME, Indra K (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat Biotechnol 10:667–674

    Article  CAS  Google Scholar 

  4. Weeks JT, Anderson OD, Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102:1077–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Greer MS, Kovalchuk I, Eudes F (2009) Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation of Triticum aestivum. New Biotechnol 26:44–52

    Article  CAS  Google Scholar 

  6. Fadeev VS, Blinkova OV, Gaponenko AK (2006) Optimization of biological and physical parameters for biolistic genetic transformation of common wheat (Triticum aestivum L.) using a particle inflow gun. Russ J Genet 42:402–411

    Article  CAS  Google Scholar 

  7. Rasco-Gaunt S, Riley A, Barcelo P, Lazzeri PA (1999) Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep 19:118–127

    Article  CAS  Google Scholar 

  8. Kao C-Y, Huang S-H, Lin C-M (2008) A low-pressure gene gun for genetic transformation of maize (Zea mays L.) Plant Biotechnol Rep 2:267–270

    Article  Google Scholar 

  9. Svarovsky S, Borovkov A, Sykes K (2008) Cationic gold microparticles for biolistic delivery of nucleic acids. BioTechniques 45:535–540

    Article  CAS  PubMed  Google Scholar 

  10. Sivamani E, DeLong RK, Qu R (2009) Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Rep 28:213–221

    Article  CAS  PubMed  Google Scholar 

  11. Rasco-Gaunt S, Riley A, Cannell M et al (2001) Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J Exp Bot 52:865–874

    Article  CAS  PubMed  Google Scholar 

  12. Melchiorre MN, Lascano HR, Trippi VS (2002) Transgenic wheat plants resistant to herbicide BASTA obtained by microprojectile bombardment. Biocell 26:217–223

    CAS  PubMed  Google Scholar 

  13. Fadeev VS, Shimshilashvili HR, Gaponenko AK (2008) Induction, regeneration, and biolistic sensitivities of different genotypes of common wheat (Triticum aestivum L.) Russ J Genet 44:1096–1104

    Article  CAS  Google Scholar 

  14. Pellegrineschi A, Noguera LM, Skovmand B, Brito RM, Velazquez L, Salgado MM, Hernandez R, Warburton M, Hoisington D (2002) Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome 45:421–430

    Article  CAS  PubMed  Google Scholar 

  15. Tassy C, Partier A, Beckert M, Feuillet C, Barret P (2014) Biolistic transformation of wheat: increased production of plants with simple insertions and heritable transgene expression. Plant Cell Tissue Org Cult 119:171–181

    Article  CAS  Google Scholar 

  16. Agrawal PK, Kohli A, Twyman RM, Christou P (2005) Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Mol Breed 16:247–260

    Article  CAS  Google Scholar 

  17. Uzé M, Potrykus I, Sautter C (1999) Single-stranded DNA in the genetic transformation of wheat (Triticum aestivum L.): transformation frequency and integration pattern. Theor Appl Genet 99:487–495

    Article  PubMed  Google Scholar 

  18. Yao Q, Cong L, He G et al (2007) Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Mol Biol Rep 34:61–67

    Article  CAS  PubMed  Google Scholar 

  19. Altpeter F, Baisakh N, Beachy R et al (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  20. Kohli A, Christou P (2008) Stable transgenes bear fruit. Nat Biotechnol 26:653–654

    Article  CAS  PubMed  Google Scholar 

  21. Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kohli A, Leech M, Vain P et al (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci U S A 95:7203–7208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jackson SA, Zhang P, Chen WP et al (2001) High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theor Appl Genet 103:56–62

    Article  CAS  Google Scholar 

  24. Svitashev SK, Somers DA (2001) Genomic interspersions determine the size and complexity of transgene loci in transgenic plants produced by microprojectile bombardment. Genome 44:691–697

    Article  CAS  PubMed  Google Scholar 

  25. Abranches R, Santos AP, Wegel E et al (2000) Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase. Plant J 24:713–723

    Article  CAS  PubMed  Google Scholar 

  26. Anand A, Trick HN, Gill BS, Muthukrishnan S (2003) Stable transgene expression and random gene silencing in wheat. Plant Biotechnol J 1:241–251

    Article  CAS  PubMed  Google Scholar 

  27. Howarth JR, Jacquet JN, Doherty A et al (2005) Molecular genetic analysis of silencing in two lines of Triticum aestivum transformed with the reporter gene construct pAHC25. Ann Appl Biol 146:311–320

    Article  CAS  Google Scholar 

  28. Fu X, Kohli A, Twyman RM, Christou P (2000) Alternative silencing effects involve distinct types of non-spreading cytosine methylation at a three-gene, single-copy transgenic locus in rice. Mol Gen Genet 263:106–118

    Article  CAS  PubMed  Google Scholar 

  29. Harsh C, Paramjit K (2011) Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol J 9:408–417

    Article  Google Scholar 

  30. Russel Kikkert J (1993) The Biolistic_ PDS-1000/he device. Plant Cell Tissue Organ Cult 33:221–226

    Article  Google Scholar 

  31. Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  CAS  PubMed  Google Scholar 

  32. Zhou H, Arrowsmith JW, Fromm ME, Hironaka CM, Taylor ML, Rodriguez D, Pajeau ME, Brown SM, Santino CG, Fry JE (1995) Glyphosate-tolerant CP4 and GOX genes as selectable marker in wheat transformation. Plant Cell Rep 15:159–163

    Article  CAS  PubMed  Google Scholar 

  33. Ogawa T, Kawahigashi H, Toki S, Handa H (2008) Efficient transformation of wheat by using a mutated rice acetolactate synthase gene as selectable marker. Plant Cell Rep 27:1325–1331

    Article  CAS  PubMed  Google Scholar 

  34. Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436

    Article  CAS  Google Scholar 

  35. Tassy C, Feuillet C, Barret P (2006) A method for the mid-term storage of plant tissue samples at room temperature and successive cycles of DNA extraction. Plant Mol Biol Rep 24:247a–247f

    Article  Google Scholar 

  36. Barret P, Delourme R, Renard M, Domergue F, Lessire R, Delseny M, Roscoe TJ (1998) A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theor Appl Genet 96:177–186

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the glasshouse team for optimal plant breeding. This work was supported by INRA BAP (Biology and Plant Breeding) department grants and by the program Investments for the Future (grant ANR-11-BTBR-0006-GENIUS) managed by the French National Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Tassy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tassy, C., Barret, P. (2017). Biolistic Transformation of Wheat. In: Bhalla, P., Singh, M. (eds) Wheat Biotechnology. Methods in Molecular Biology, vol 1679. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7337-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7337-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7335-4

  • Online ISBN: 978-1-4939-7337-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics