Skip to main content

NMDA Receptors in the Central Nervous System

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1677))

Abstract

NMDA-type glutamate receptors are ligand-gated ion channels that mediate a major component of excitatory neurotransmission in the central nervous system (CNS). They are widely distributed at all stages of development and are critically involved in normal brain functions, including neuronal development and synaptic plasticity. NMDA receptors are also implicated in the pathophysiology of numerous neurological and psychiatric disorders, such as ischemic stroke, traumatic brain injury, Alzheimer’s disease, epilepsy, mood disorders, and schizophrenia. For these reasons, NMDA receptors have been intensively studied in the past several decades to elucidate their physiological roles and to advance them as therapeutic targets. Seven NMDA receptor subunits exist that assemble into a diverse array of tetrameric receptor complexes, which are differently regulated, have distinct regional and developmental expression, and possess a wide range of functional and pharmacological properties. The diversity in subunit composition creates NMDA receptor subtypes with distinct physiological roles across neuronal cell types and brain regions, and enables precise tuning of synaptic transmission. Here, we will review the relationship between NMDA receptor structure and function, the diversity and significance of NMDA receptor subtypes in the CNS, as well as principles and rules by which NMDA receptors operate in the CNS under normal and pathological conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496. doi:10.1124/pr.109.002451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14(6):383–400. doi:10.1038/nrn3504

    Article  CAS  PubMed  Google Scholar 

  3. Matsuda K, Yuzaki M (2012) Cbln1 and the delta2 glutamate receptor--an orphan ligand and an orphan receptor find their partners. Cerebellum 11(1):78–84. doi:10.1007/s12311-010-0186-5

    Article  CAS  PubMed  Google Scholar 

  4. Yuzaki M (2009) New (but old) molecules regulating synapse integrity and plasticity: Cbln1 and the delta2 glutamate receptor. Neuroscience 162(3):633–643

    Article  CAS  PubMed  Google Scholar 

  5. Schmid SM, Hollmann M (2008) To gate or not to gate: are the delta subunits in the glutamate receptor family functional ion channels? Mol Neurobiol 37(2-3):126–141

    Article  CAS  PubMed  Google Scholar 

  6. Kakegawa W, Miyazaki T, Kohda K, Matsuda K, Emi K, Motohashi J, Watanabe M, Yuzaki M (2009) The N-terminal domain of GluD2 (GluRdelta2) recruits presynaptic terminals and regulates synaptogenesis in the cerebellum in vivo. J Neurosci 29(18):5738–5748. doi:10.1523/JNEUROSCI.6013-08.2009

    Article  CAS  PubMed  Google Scholar 

  7. Matsuda K, Miura E, Miyazaki T, Kakegawa W, Emi K, Narumi S, Fukazawa Y, Ito-Ishida A, Kondo T, Shigemoto R, Watanabe M, Yuzaki M (2010) Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapse organizer. Science 328(5976):363–368

    Article  CAS  PubMed  Google Scholar 

  8. Elegheert J, Kakegawa W, Clay JE, Shanks NF, Behiels E, Matsuda K, Kohda K, Miura E, Rossmann M, Mitakidis N, Motohashi J, Chang VT, Siebold C, Greger IH, Nakagawa T, Yuzaki M, Aricescu AR (2016) Structural basis for integration of GluD receptors within synaptic organizer complexes. Science 353(6296):295–299. doi:10.1126/science.aae0104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kakegawa W, Miyazaki T, Hirai H, Motohashi J, Mishina M, Watanabe M, Yuzaki M (2007) Ca2+ permeability of the channel pore is not essential for the delta 2 glutamate receptor to regulate synaptic plasticity and motor coordination. J Physiol 579(3):729–735. doi:10.1113/jphysiol.2006.127100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmid SM, Kott S, Sager C, Huelsken T, Hollmann M (2009) The glutamate receptor subunit delta2 is capable of gating its intrinsic ion channel as revealed by ligand binding domain transplantation. Proc Natl Acad Sci U S A 106(25):10320–10325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dadak S, Bouquier N, Goyet E, Fagni L, Levenes C, Perroy J (2017) mGlu1 receptor canonical signaling pathway contributes to the opening of the orphan GluD2 receptor. Neuropharmacology 115:92. doi:10.1016/j.neuropharm.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  12. Geiger JRP, Lubke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18(6):1009–1023. doi:10.1016/S0896-6273(00)80339-6

    Article  CAS  PubMed  Google Scholar 

  13. Sah P, Hestrin S, Nicoll RA (1990) Properties of excitatory postsynaptic currents recorded in vitro from rat hippocampal interneurones. J Physiol 430:605–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hestrin S, Nicoll RA, Perkel DJ, Sah P (1990) Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J Physiol 422:203–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trussell LO, Zhang S, Raman IM (1993) Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron 10(6):1185–1196

    Article  CAS  PubMed  Google Scholar 

  16. Copits BA, Swanson GT (2012) Dancing partners at the synapse: auxiliary subunits that shape kainate receptor function. Nat Rev Neurosci 13(10):675–686. doi:10.1038/nrn3335

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465

    Article  CAS  PubMed  Google Scholar 

  18. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309(5965):261–263

    Article  CAS  PubMed  Google Scholar 

  19. Seeburg PH, Burnashev N, Kohr G, Kuner T, Sprengel R, Monyer H (1995) The NMDA receptor channel: molecular design of a coincidence detector. Recent Prog Horm Res 50:19–34

    CAS  PubMed  Google Scholar 

  20. Bourne HR, Nicoll R (1993) Molecular machines integrate coincident synaptic signals. Cell 72(Suppl):65–75

    Article  PubMed  Google Scholar 

  21. Volianskis A, France G, Jensen MS, Bortolotto ZA, Jane DE, Collingridge GL (2015) Long-term potentiation and the role of N-methyl-D-aspartate receptors. Brain Res 1621:5–16. doi:10.1016/j.brainres.2015.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zorumski CF, Izumi Y (2012) NMDA receptors and metaplasticity: mechanisms and possible roles in neuropsychiatric disorders. Neurosci Biobehav Rev 36(3):989–1000. doi:10.1016/j.neubiorev.2011.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8(6):413–426. doi:10.1038/nrn2153

    Article  CAS  PubMed  Google Scholar 

  24. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9):647–658. doi:10.1038/nrn2699

    Article  CAS  PubMed  Google Scholar 

  25. Granger AJ, Nicoll RA (2014) Expression mechanisms underlying long-term potentiation: a postsynaptic view, 10 years on. Philos Trans R Soc Lond B Biol Sci 369(1633):20130136. doi:10.1098/rstb.2013.0136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1):18–41. doi:10.1038/sj.npp.1301559

    Article  PubMed  Google Scholar 

  27. Morris RG (2013) NMDA receptors and memory encoding. Neuropharmacology 74:32–40. doi:10.1016/j.neuropharm.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  28. Hunt DL, Castillo PE (2012) Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol 22(3):496–508. doi:10.1016/j.conb.2012.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241(4867):835–837

    Article  CAS  PubMed  Google Scholar 

  30. Benveniste M, Mayer ML (1991) Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys J 59(3):560–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Clements JD, Westbrook GL (1994) Kinetics of AP5 dissociation from NMDA receptors: evidence for two identical cooperative binding sites. J Neurophysiol 71(6):2566–2569

    CAS  PubMed  Google Scholar 

  32. Anson LC, Chen PE, Wyllie DJA, Colquhoun D, Schoepfer R (1998) Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors. J Neurosci 18(2):581–589

    CAS  PubMed  Google Scholar 

  33. Williams K, Chao J, Kashiwagi K, Masuko T, Igarashi K (1996) Activation of N-methyl-D-aspartate receptors by glycine: role of an aspartate residue in the M3-M4 loop of the NR1 subunit. Mol Pharmacol 50(4):701–708

    CAS  PubMed  Google Scholar 

  34. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104):529–531. doi:10.1038/325529a0

    Article  CAS  PubMed  Google Scholar 

  35. Clements JD, Westbrook GL (1991) Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7(4):605–613

    Article  CAS  PubMed  Google Scholar 

  36. Oliet SH, Mothet JP (2009) Regulation of N-methyl-D-aspartate receptors by astrocytic D-serine. Neuroscience 158(1):275–283. doi:10.1016/j.neuroscience.2008.01.071

    Article  CAS  PubMed  Google Scholar 

  37. Wolosker H (2007) NMDA receptor regulation by D-serine: new findings and perspectives. Mol Neurobiol 36(2):152–164. doi:10.1007/s12035-007-0038-6

    Article  CAS  PubMed  Google Scholar 

  38. Mothet JP, Le Bail M, Billard JM (2015) Time and space profiling of NMDA receptor co-agonist functions. J Neurochem 135(2):210–225. doi:10.1111/jnc.13204

    Article  CAS  PubMed  Google Scholar 

  39. Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150(3):633–646. doi:10.1016/j.cell.2012.06.029

    Article  CAS  PubMed  Google Scholar 

  40. Bergeron R, Meyer TM, Coyle JT, Greene RW (1998) Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci U S A 95(26):15730–15734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Billups D, Attwell D (2003) Active release of glycine or D-serine saturates the glycine site of NMDA receptors at the cerebellar mossy fibre to granule cell synapse. Eur J Neurosci 18(11):2975–2980

    Article  PubMed  Google Scholar 

  42. Parsons MP, Raymond LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82(2):279–293. doi:10.1016/j.neuron.2014.03.030

    Article  CAS  PubMed  Google Scholar 

  43. Choi DW, Koh JY, Peters S (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci 8(1):185–196

    CAS  PubMed  Google Scholar 

  44. Ellren K, Lehmann A (1989) Calcium dependency of N-methyl-D-aspartate toxicity in slices from the immature rat hippocampus. Neuroscience 32(2):371–379

    Article  CAS  PubMed  Google Scholar 

  45. Mody I, MacDonald JF (1995) NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2+ release. Trends Pharmacol Sci 16(10):356–359

    Article  CAS  PubMed  Google Scholar 

  46. Wroge CM, Hogins J, Eisenman L, Mennerick S (2012) Synaptic NMDA receptors mediate hypoxic excitotoxic death. J Neurosci 32(19):6732–6742. doi:10.1523/JNEUROSCI.6371-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Olney JW, Sharpe LG (1969) Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 166(3903):386–388

    Article  CAS  PubMed  Google Scholar 

  48. Surmeier DJ, Schumacker PT (2013) Calcium, bioenergetics, and neuronal vulnerability in Parkinson’s disease. J Biol Chem 288(15):10736–10741. doi:10.1074/jbc.R112.410530

    Article  CAS  PubMed  Google Scholar 

  49. Hallett PJ, Standaert DG (2004) Rationale for and use of NMDA receptor antagonists in Parkinson’s disease. Pharmacol Ther 102(2):155–174. doi:10.1016/j.pharmthera.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  50. Low SJ, Roland CL (2004) Review of NMDA antagonist-induced neurotoxicity and implications for clinical development. Int J Clin Pharmacol Ther 42(1):1–14

    Article  CAS  PubMed  Google Scholar 

  51. Javitt DC (2007) Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 78:69–108. doi:10.1016/S0074-7742(06)78003-5

    Article  CAS  PubMed  Google Scholar 

  52. Farber NB (2003) The NMDA receptor hypofunction model of psychosis. Ann N Y Acad Sci 1003:119–130

    Article  CAS  PubMed  Google Scholar 

  53. Moghaddam B, Krystal JH (2012) Capturing the angel in “angel dust”: twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophr Bull 38(5):942–949. doi:10.1093/schbul/sbs075

    Article  PubMed  PubMed Central  Google Scholar 

  54. Strong KL, Jing Y, Prosser AR, Traynelis SF, Liotta DC (2014) NMDA receptor modulators: an updated patent review (2013-2014). Expert Opin Ther Pat 24(12):1349–1366. doi:10.1517/13543776.2014.972938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ogden KK, Traynelis SF (2011) New advances in NMDA receptor pharmacology. Trends Pharmacol Sci 32(12):726–733. doi:10.1016/j.tips.2011.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhu S, Paoletti P (2015) Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Curr Opin Pharmacol 20:14–23. doi:10.1016/j.coph.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  57. Divito CB, Underhill SM (2014) Excitatory amino acid transporters: roles in glutamatergic neurotransmission. Neurochem Int 73:172–180. doi:10.1016/j.neuint.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  58. Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258(5087):1498–1501

    Article  CAS  PubMed  Google Scholar 

  59. Lester RA, Clements JD, Westbrook GL, Jahr CE (1990) Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346(6284):565–567. doi:10.1038/346565a0

    Article  CAS  PubMed  Google Scholar 

  60. Erreger K, Dravid SM, Banke TG, Wyllie DJ, Traynelis SF (2005) Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol 563(Pt 2):345–358. doi:10.1113/jphysiol.2004.080028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lester RA, Jahr CE (1992) NMDA channel behavior depends on agonist affinity. J Neurosci 12(2):635–643

    CAS  PubMed  Google Scholar 

  62. Vicini S, Wang JF, Li JH, Zhu WJ, Wang YH, Luo JAH, Wolfe BB, Grayson DR (1998) Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J Neurophysiol 79(2):555–566

    CAS  PubMed  Google Scholar 

  63. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3):529–540

    Article  CAS  PubMed  Google Scholar 

  64. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256(5060):1217–1221

    Article  CAS  PubMed  Google Scholar 

  65. Ulbrich MH, Isacoff EY (2007) Subunit counting in membrane-bound proteins. Nat Methods 4(4):319–321. doi:10.1038/nmeth1024

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee CH, Lu W, Michel JC, Goehring A, Du J, Song X, Gouaux E (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511(7508):191–197. doi:10.1038/nature13548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344(6187):992–997. doi:10.1126/science.1251915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kehoe LA, Bernardinelli Y, Muller D (2013) GluN3A: an NMDA receptor subunit with exquisite properties and functions. Neural Plast 2013:145387. doi:10.1155/2013/145387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Pachernegg S, Strutz-Seebohm N, Hollmann M (2012) GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci 35(4):240–249. doi:10.1016/j.tins.2011.11.010

    Article  CAS  PubMed  Google Scholar 

  70. Henson MA, Roberts AC, Perez-Otano I, Philpot BD (2010) Influence of the NR3A subunit on NMDA receptor functions. Prog Neurobiol 91(1):23–37. doi:10.1016/j.pneurobio.2010.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cavara NA, Hollmann M (2008) Shuffling the deck anew: how NR3 tweaks NMDA receptor function. Mol Neurobiol 38(1):16–26. doi:10.1007/s12035-008-8029-9

    Article  CAS  PubMed  Google Scholar 

  72. Low CM, Wee KS (2010) New insights into the not-so-new NR3 subunits of N-methyl-D-aspartate receptor: localization, structure, and function. Mol Pharmacol 78(1):1–11. doi:10.1124/mol.110.064006

    Article  CAS  PubMed  Google Scholar 

  73. Hollmann M, Boulter J, Maron C, Beasley L, Sullivan J, Pecht G, Heinemann S (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10(5):943–954

    Article  CAS  PubMed  Google Scholar 

  74. Durand GM, Gregor P, Zheng X, Bennett MV, Uhl GR, Zukin RS (1992) Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc Natl Acad Sci U S A 89(19):9359–9363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nakanishi N, Axel R, Shneider NA (1992) Alternative splicing generates functionally distinct N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A 89(18):8552–8556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sugihara H, Moriyoshi K, Ishii T, Masu M, Nakanishi S (1992) Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem Biophys Res Commun 185(3):826–832

    Article  CAS  PubMed  Google Scholar 

  77. Laurie DJ, Seeburg PH (1994) Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J Neurosci 14(5 Pt 2):3180–3194

    CAS  PubMed  Google Scholar 

  78. Paupard MC, Friedman LK, Zukin RS (1997) Developmental regulation and cell-specific expression of N-methyl-D-aspartate receptor splice variants in rat hippocampus. Neuroscience 79(2):399–409

    Article  CAS  PubMed  Google Scholar 

  79. Zhong J, Carrozza DP, Williams K, Pritchett DB, Molinoff PB (1995) Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain. J Neurochem 64(2):531–539

    Article  CAS  PubMed  Google Scholar 

  80. Traynelis SF, Burgess MF, Zheng F, Lyuboslavsky P, Powers JL (1998) Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci 18(16):6163–6175

    CAS  PubMed  Google Scholar 

  81. Traynelis SF, Hartley M, Heinemann SF (1995) Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268(5212):873–876

    Article  CAS  PubMed  Google Scholar 

  82. Rumbaugh G, Prybylowski K, Wang JF, Vicini S (2000) Exon 5 and spermine regulate deactivation of NMDA receptor subtypes. J Neurophysiol 83(3):1300–1306

    CAS  PubMed  Google Scholar 

  83. Vance KM, Hansen KB, Traynelis SF (2012) GluN1 splice variant control of GluN1/GluN2D NMDA receptors. J Physiol 590(16):3857–3875. doi:10.1113/jphysiol.2012.234062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Swanger SA, Vance KM, Pare JF, Sotty F, Fog K, Smith Y, Traynelis SF (2015) NMDA receptors containing the GluN2D subunit control neuronal function in the subthalamic nucleus. J Neurosci 35(48):15971–15983. doi:10.1523/JNEUROSCI.1702-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mott DD, Doherty JJ, Zhang S, Washburn MS, Fendley MJ, Lyuboslavsky P, Traynelis SF, Dingledine R (1998) Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nat Neurosci 1(8):659–667. doi:10.1038/3661

    Article  CAS  PubMed  Google Scholar 

  86. Pahk AJ, Williams K (1997) Influence of extracellular pH on inhibition by ifenprodil at N-methyl-D-aspartate receptors in Xenopus oocytes. Neurosci Lett 225(1):29–32

    Article  CAS  PubMed  Google Scholar 

  87. Durand GM, Bennett MV, Zukin RS (1993) Splice variants of the N-methyl-D-aspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C. Proc Natl Acad Sci U S A 90(14):6731–6735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang L, Zheng X, Paupard MC, Wang AP, Santchi L, Friedman LK, Zukin RS, Bennett MV (1994) Spermine potentiation of recombinant N-methyl-D-aspartate receptors is affected by subunit composition. Proc Natl Acad Sci U S A 91(23):10883–10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Scott DB, Blanpied TA, Swanson GT, Zhang C, Ehlers MD (2001) An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci 21(9):3063–3072

    CAS  PubMed  Google Scholar 

  90. Mu Y, Otsuka T, Horton AC, Scott DB, Ehlers MD (2003) Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron 40(3):581–594

    Article  CAS  PubMed  Google Scholar 

  91. Scott DB, Blanpied TA, Ehlers MD (2003) Coordinated PKA and PKC phosphorylation suppresses RXR-mediated ER retention and regulates the surface delivery of NMDA receptors. Neuropharmacology 45(6):755–767

    Article  CAS  PubMed  Google Scholar 

  92. Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N (1994) Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 347(1):150–160. doi:10.1002/cne.903470112

    Article  CAS  PubMed  Google Scholar 

  93. Watanabe M, Inoue Y, Sakimura K, Mishina M (1992) Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 3(12):1138–1140

    Article  CAS  PubMed  Google Scholar 

  94. Yuan H, Hansen KB, Vance KM, Ogden KK, Traynelis SF (2009) Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J Neurosci 29(39):12045–12058. doi:10.1523/JNEUROSCI.1365-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M et al (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268(4):2836–2843

    CAS  PubMed  Google Scholar 

  96. Hackos DH, Hanson JE (2016) Diverse modes of NMDA receptor positive allosteric modulation: mechanisms and consequences. Neuropharmacology 112:34. doi:10.1016/j.neuropharm.2016.07.037

    Article  PubMed  CAS  Google Scholar 

  97. Vyklicky V, Korinek M, Smejkalova T, Balik A, Krausova B, Kaniakova M, Lichnerova K, Cerny J, Krusek J, Dittert I, Horak M, Vyklicky L (2014) Structure, function, and pharmacology of NMDA receptor channels. Physiol Res 63(Suppl 1):S191–S203

    CAS  PubMed  Google Scholar 

  98. Qian A, Buller AL, Johnson JW (2005) NR2 subunit-dependence of NMDA receptor channel block by external Mg2+. J Physiol 562(Pt 2):319–331

    Article  CAS  PubMed  Google Scholar 

  99. Kuner T, Schoepfer R (1996) Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels. J Neurosci 16(11):3549–3558

    CAS  PubMed  Google Scholar 

  100. Paoletti P, Ascher P, Neyton J (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J Neurosci 17(15):5711–5725

    CAS  PubMed  Google Scholar 

  101. Chen PE, Geballe MT, Katz E, Erreger K, Livesey MR, O’Toole KK, Le P, Lee CJ, Snyder JP, Traynelis SF, Wyllie DJ (2008) Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. J Physiol 586(1):227–245. doi:10.1113/jphysiol.2007.143172

    Article  CAS  PubMed  Google Scholar 

  102. Erreger K, Geballe MT, Kristensen A, Chen PE, Hansen KB, Lee CJ, Yuan H, Le P, Lyuboslavsky PN, Micale N, Jorgensen L, Clausen RP, Wyllie DJ, Snyder JP, Traynelis SF (2007) Subunit-specific agonist activity at NR2A-, NR2B-, NR2C-, and NR2D-containing N-methyl-D-aspartate glutamate receptors. Mol Pharmacol 72(4):907–920. doi:10.1124/mol.107.037333

    Article  CAS  PubMed  Google Scholar 

  103. Hansen KB, Brauner-Osborne H, Egebjerg J (2008) Pharmacological characterization of ligands at recombinant NMDA receptor subtypes by electrophysiological recordings and intracellular calcium measurements. Comb Chem High Throughput Screen 11(4):304–315. doi:10.2174/138620708784246040

    Article  CAS  PubMed  Google Scholar 

  104. Erreger K, Chen PE, Wyllie DJ, Traynelis SF (2004) Glutamate receptor gating. Crit Rev Neurobiol 16(3):187–224

    Article  CAS  PubMed  Google Scholar 

  105. Wyllie DJ, Livesey MR, Hardingham GE (2013) Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 74:4–17. doi:10.1016/j.neuropharm.2013.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Glasgow NG, Siegler Retchless B, Johnson JW (2015) Molecular bases of NMDA receptor subtype-dependent properties. J Physiol 593(1):83–95. doi:10.1113/jphysiol.2014.273763

    Article  CAS  PubMed  Google Scholar 

  107. Eriksson M, Nilsson A, Samuelsson H, Samuelsson EB, Mo L, Akesson E, Benedikz E, Sundstrom E (2007) On the role of NR3A in human NMDA receptors. Physiol Behav 92(1-2):54–59. doi:10.1016/j.physbeh.2007.05.026

    Article  CAS  PubMed  Google Scholar 

  108. Yao Y, Harrison CB, Freddolino PL, Schulten K, Mayer ML (2008) Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. EMBO J 27(15):2158–2170. doi:10.1038/emboj.2008.140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yao Y, Mayer ML (2006) Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A. J Neurosci 26(17):4559–4566. doi:10.1523/JNEUROSCI.0560-06.2006

    Article  CAS  PubMed  Google Scholar 

  110. Nilsson A, Duan J, Mo-Boquist LL, Benedikz E, Sundstrom E (2007) Characterisation of the human NMDA receptor subunit NR3A glycine binding site. Neuropharmacology 52(4):1151–1159. doi:10.1016/j.neuropharm.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  111. Nilsson A, Eriksson M, Muly EC, Akesson E, Samuelsson EB, Bogdanovic N, Benedikz E, Sundstrom E (2007) Analysis of NR3A receptor subunits in human native NMDA receptors. Brain Res 1186:102–112. doi:10.1016/j.brainres.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  112. Pilli J, Kumar SS (2012) Triheteromeric N-methyl-D-aspartate receptors differentiate synaptic inputs onto pyramidal neurons in somatosensory cortex: involvement of the GluN3A subunit. Neuroscience 222:75–88. doi:10.1016/j.neuroscience.2012.07.020

    Article  CAS  PubMed  Google Scholar 

  113. Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, Dikkes P, Conner DA, Rayudu PV, Cheung W, Chen HS, Lipton SA, Nakanishi N (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393(6683):377–381. doi:10.1038/30748

    Article  CAS  PubMed  Google Scholar 

  114. Perez-Otano I, Schulteis CT, Contractor A, Lipton SA, Trimmer JS, Sucher NJ, Heinemann SF (2001) Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 21(4):1228–1237

    CAS  PubMed  Google Scholar 

  115. Larsen RS, Corlew RJ, Henson MA, Roberts AC, Mishina M, Watanabe M, Lipton SA, Nakanishi N, Perez-Otano I, Weinberg RJ, Philpot BD (2011) NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity. Nat Neurosci 14(3):338–344. doi:10.1038/nn.2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Al-Hallaq RA, Jarabek BR, Fu Z, Vicini S, Wolfe BB, Yasuda RP (2002) Association of NR3A with the N-methyl-D-aspartate receptor NR1 and NR2 subunits. Mol Pharmacol 62(5):1119–1127

    Article  CAS  PubMed  Google Scholar 

  117. Matsuda K, Fletcher M, Kamiya Y, Yuzaki M (2003) Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J Neurosci 23(31):10064–10073

    CAS  PubMed  Google Scholar 

  118. Tong G, Takahashi H, Tu S, Shin Y, Talantova M, Zago W, Xia P, Nie Z, Goetz T, Zhang D, Lipton SA, Nakanishi N (2008) Modulation of NMDA receptor properties and synaptic transmission by the NR3A subunit in mouse hippocampal and cerebrocortical neurons. J Neurophysiol 99(1):122–132. doi:10.1152/jn.01044.2006

    Article  CAS  PubMed  Google Scholar 

  119. Matsuda K, Kamiya Y, Matsuda S, Yuzaki M (2002) Cloning and characterization of a novel NMDA receptor subunit NR3B: a dominant subunit that reduces calcium permeability. Mol Brain Res 100(1-2):43–52. doi:10.1016/S0169-328x(02)00173-0. pii S0169-328x(02)00173-0

    Article  CAS  PubMed  Google Scholar 

  120. Perez-Otano I, Lujan R, Tavalin SJ, Plomann M, Modregger J, Liu XB, Jones EG, Heinemann SF, Lo DC, Ehlers MD (2006) Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nat Neurosci 9(5):611–621. doi:10.1038/nn1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chowdhury D, Marco S, Brooks IM, Zandueta A, Rao Y, Haucke V, Wesseling JF, Tavalin SJ, Perez-Otano I (2013) Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing NMDA receptors. J Neurosci 33(9):4151–4164. doi:10.1523/JNEUROSCI.2721-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yuan T, Mameli M, O’Connor EC, Dey PN, Verpelli C, Sala C, Perez-Otano I, Luscher C, Bellone C (2013) Expression of cocaine-evoked synaptic plasticity by GluN3A-containing NMDA receptors. Neuron 80(4):1025–1038. doi:10.1016/j.neuron.2013.07.050

    Article  CAS  PubMed  Google Scholar 

  123. Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415(6873):793–798. doi:10.1038/nature715

    Article  CAS  PubMed  Google Scholar 

  124. Ulbrich MH, Isacoff EY (2008) Rules of engagement for NMDA receptor subunits. Proc Natl Acad Sci U S A 105(37):14163–14168. doi:10.1073/pnas.0802075105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Smothers CT, Woodward JJ (2007) Pharmacological characterization of glycine-activated currents in HEK 293 cells expressing N-methyl-D-aspartate NR1 and NR3 subunits. J Pharmacol Exp Ther 322(2):739–748. doi:10.1124/jpet.107.123836

    Article  CAS  PubMed  Google Scholar 

  126. Sasaki YF, Rothe T, Premkumar LS, Das S, Cui J, Talantova MV, Wong HK, Gong X, Chan SF, Zhang D, Nakanishi N, Sucher NJ, Lipton SA (2002) Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J Neurophysiol 87(4):2052–2063. doi:10.1152/jn.00531.2001

    Article  CAS  PubMed  Google Scholar 

  127. Madry C, Betz H, Geiger JR, Laube B (2010) Potentiation of glycine-gated NR1/NR3A NMDA receptors relieves Ca-dependent outward rectification. Front Mol Neurosci 3:6. doi:10.3389/fnmol.2010.00006

    PubMed  PubMed Central  Google Scholar 

  128. Madry C, Mesic I, Bartholomaus I, Nicke A, Betz H, Laube B (2007) Principal role of NR3 subunits in NR1/NR3 excitatory glycine receptor function. Biochem Biophys Res Commun 354(1):102–108. doi:10.1016/j.bbrc.2006.12.153

    Article  CAS  PubMed  Google Scholar 

  129. Awobuluyi M, Yang J, Ye Y, Chatterton JE, Godzik A, Lipton SA, Zhang D (2007) Subunit-specific roles of glycine-binding domains in activation of NR1/NR3 N-methyl-D-aspartate receptors. Mol Pharmacol 71(1):112–122. doi:10.1124/mol.106.030700

    Article  CAS  PubMed  Google Scholar 

  130. Kvist T, Greenwood JR, Hansen KB, Traynelis SF, Brauner-Osborne H (2013) Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors. Neuropharmacology 75:324–336. doi:10.1016/j.neuropharm.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  131. Al-Hallaq RA, Conrads TP, Veenstra TD, Wenthold RJ (2007) NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J Neurosci 27(31):8334–8343. doi:10.1523/JNEUROSCI.2155-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rauner C, Kohr G (2011) Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J Biol Chem 286(9):7558–7566. doi:10.1074/jbc.M110.182600

    Article  CAS  PubMed  Google Scholar 

  133. Tovar KR, McGinley MJ, Westbrook GL (2013) Triheteromeric NMDA receptors at hippocampal synapses. J Neurosci 33(21):9150–9160. doi:10.1523/JNEUROSCI.0829-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Luo JH, Wang YH, Yasuda RP, Dunah AW, Wolfe BB (1997) The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol Pharmacol 51(1):79–86

    CAS  PubMed  Google Scholar 

  135. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368(6467):144–147. doi:10.1038/368144a0

    Article  CAS  PubMed  Google Scholar 

  136. Chazot PL, Stephenson FA (1997) Molecular dissection of native mammalian forebrain NMDA receptors containing the NR1 C2 exon: direct demonstration of NMDA receptors comprising NR1, NR2A, and NR2B subunits within the same complex. J Neurochem 69(5):2138–2144

    Article  CAS  PubMed  Google Scholar 

  137. Brickley SG, Misra C, Mok MH, Mishina M, Cull-Candy SG (2003) NR2B and NR2D subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites. J Neurosci 23(12):4958–4966

    CAS  PubMed  Google Scholar 

  138. Pina-Crespo JC, Gibb AJ (2002) Subtypes of NMDA receptors in new-born rat hippocampal granule cells. J Physiol 541(Pt 1):41–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jones S, Gibb AJ (2005) Functional NR2B- and NR2D-containing NMDA receptor channels in rat substantia nigra dopaminergic neurones. J Physiol 569(Pt 1):209–221. doi:10.1113/jphysiol.2005.095554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chazot PL, Coleman SK, Cik M, Stephenson FA (1994) Molecular characterization of N-methyl-D-aspartate receptors expressed in mammalian cells yields evidence for the coexistence of three subunit types within a discrete receptor molecule. J Biol Chem 269(39):24403–24409

    CAS  PubMed  Google Scholar 

  141. Cathala L, Misra C, Cull-Candy S (2000) Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. J Neurosci 20(16):5899–5905

    CAS  PubMed  Google Scholar 

  142. Huang Z, Gibb AJ (2014) Mg2+ block properties of triheteromeric GluN1-GluN2B-GluN2D NMDA receptors on neonatal rat substantia nigra pars compacta dopaminergic neurones. J Physiol 592(10):2059–2078. doi:10.1113/jphysiol.2013.267864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Brothwell SL, Barber JL, Monaghan DT, Jane DE, Gibb AJ, Jones S (2008) NR2B- and NR2D-containing synaptic NMDA receptors in developing rat substantia nigra pars compacta dopaminergic neurones. J Physiol 586(3):739–750. doi:10.1113/jphysiol.2007.144618

    Article  CAS  PubMed  Google Scholar 

  144. Sundstrom E, Whittemore S, Mo LL, Seiger A (1997) Analysis of NMDA receptors in the human spinal cord. Exp Neurol 148(2):407–413

    Article  CAS  PubMed  Google Scholar 

  145. Dunah AW, Luo JH, Wang YH, Yasuda RP, Wolfe BB (1998) Subunit composition of N-methyl-D-aspartate receptors in the central nervous system that contain the NR2D subunit. Mol Pharmacol 53(3):429–437

    CAS  PubMed  Google Scholar 

  146. Dunah AW, Standaert DG (2003) Subcellular segregation of distinct heteromeric NMDA glutamate receptors in the striatum. J Neurochem 85(4):935–943

    Article  CAS  PubMed  Google Scholar 

  147. Lu CY, Fu ZY, Karavanov I, Yasuda RP, Wolfe BB, Buonanno A, Vicini S (2006) NMDA receptor subtypes at autaptic synapses of cerebellar granule neurons. J Neurophysiol 96(5):2282–2294. doi:10.1152/jn.00078.2006

    Article  CAS  PubMed  Google Scholar 

  148. Tovar KR, Westbrook GL (1999) The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19(10):4180–4188

    CAS  PubMed  Google Scholar 

  149. Gray JA, Shi Y, Usui H, During MJ, Sakimura K, Nicoll RA (2011) Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo. Neuron 71(6):1085–1101. doi:10.1016/j.neuron.2011.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hatton CJ, Paoletti P (2005) Modulation of triheteromeric NMDA receptors by N-terminal domain ligands. Neuron 46(2):261–274. doi:10.1016/j.neuron.2005.03.005

    Article  CAS  PubMed  Google Scholar 

  151. Hansen KB, Ogden KK, Yuan H, Traynelis SF (2014) Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81(5):1084–1096. doi:10.1016/j.neuron.2014.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tang TT, Badger JD 2nd, Roche PA, Roche KW (2010) Novel approach to probe subunit-specific contributions to N-methyl-D-aspartate (NMDA) receptor trafficking reveals a dominant role for NR2B in receptor recycling. J Biol Chem 285(27):20975–20981. doi:10.1074/jbc.M110.102210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Stroebel D, Carvalho S, Grand T, Zhu S, Paoletti P (2014) Controlling NMDA receptor subunit composition using ectopic retention signals. J Neurosci 34(50):16630–16636. doi:10.1523/JNEUROSCI.2736-14.2014

    Article  PubMed  CAS  Google Scholar 

  154. Cheriyan J, Balsara RD, Hansen KB, Castellino FJ (2016) Pharmacology of triheteromeric N-methyl-D-aspartate receptors. Neurosci Lett 617:240–246. doi:10.1016/j.neulet.2016.02.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yi F, Mou T-C, Dorsett KN, Volkmann RA, Menniti FS, Sprang SR, Hansen KB (2016) Structural basis for negative allosteric modulation of GluN2A-containing NMDA receptors. Neuron 91(6):1316–1329. doi:10.1016/j.neuron.2016.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Serraz B, Grand T, Paoletti P (2016) Altered zinc sensitivity of NMDA receptors harboring clinically-relevant mutations. Neuropharmacology 109:196–204. doi:10.1016/j.neuropharm.2016.06.008

    Article  CAS  PubMed  Google Scholar 

  157. Hackos DH, Lupardus PJ, Grand T, Chen Y, Wang TM, Reynen P, Gustafson A, Wallweber HJ, Volgraf M, Sellers BD, Schwarz JB, Paoletti P, Sheng M, Zhou Q, Hanson JE (2016) Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. Neuron 89(5):983–999. doi:10.1016/j.neuron.2016.01.016

    Article  CAS  PubMed  Google Scholar 

  158. Yuan H, Hansen KB, Zhang J, Pierson TM, Markello TC, Fajardo KV, Holloman CM, Golas G, Adams DR, Boerkoel CF, Gahl WA, Traynelis SF (2014) Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun 5:3251. doi:10.1038/ncomms4251

    PubMed  PubMed Central  Google Scholar 

  159. Khatri A, Burger PB, Swanger SA, Hansen KB, Zimmerman S, Karakas E, Liotta DC, Furukawa H, Snyder JP, Traynelis SF (2014) Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator. Mol Pharmacol 86(5):548–560. doi:10.1124/mol.114.094516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Tajima N, Karakas E, Grant T, Simorowski N, Diaz-Avalos R, Grigorieff N, Furukawa H (2016) Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534(7605):63–68. doi:10.1038/nature17679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhu S, Stein RA, Yoshioka C, Lee CH, Goehring A, McHaourab HS, Gouaux E (2016) Mechanism of NMDA receptor inhibition and activation. Cell 165(3):704–714. doi:10.1016/j.cell.2016.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Furukawa H, Gouaux E (2003) Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J 22(12):2873–2885. doi:10.1093/emboj/cdg303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Subunit arrangement and function in NMDA receptors. Nature 438(7065):185–192. doi:10.1038/nature04089

    Article  CAS  PubMed  Google Scholar 

  164. Inanobe A, Furukawa H, Gouaux E (2005) Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron 47(1):71–84. doi:10.1016/j.neuron.2005.05.022

    Article  CAS  PubMed  Google Scholar 

  165. Jespersen A, Tajima N, Fernandez-Cuervo G, Garnier-Amblard EC, Furukawa H (2014) Structural insights into competitive antagonism in NMDA receptors. Neuron 81(2):366–378. doi:10.1016/j.neuron.2013.11.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hansen KB, Tajima N, Risgaard R, Perszyk RE, Jorgensen L, Vance KM, Ogden KK, Clausen RP, Furukawa H, Traynelis SF (2013) Structural determinants of agonist efficacy at the glutamate binding site of N-methyl-D-aspartate receptors. Mol Pharmacol 84(1):114–127. doi:10.1124/mol.113.085803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yao Y, Belcher J, Berger AJ, Mayer ML, Lau AY (2013) Conformational analysis of NMDA receptor GluN1, GluN2, and GluN3 ligand-binding domains reveals subtype-specific characteristics. Structure 21(10):1788–1799. doi:10.1016/j.str.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  168. Vance KM, Simorowski N, Traynelis SF, Furukawa H (2011) Ligand-specific deactivation time course of GluN1/GluN2D NMDA receptors. Nat Commun 2:294. doi:10.1038/ncomms1295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Volgraf M, Sellers BD, Jiang Y, Wu G, Ly CQ, Villemure E, Pastor RM, Yuen PW, Lu A, Luo X, Liu M, Zhang S, Sun L, Fu Y, Lupardus PJ, Wallweber HJ, Liederer BM, Deshmukh G, Plise E, Tay S, Reynen P, Herrington J, Gustafson A, Liu Y, Dirksen A, Dietz MG, Liu Y, Wang TM, Hanson JE, Hackos D, Scearce-Levie K, Schwarz JB (2016) Discovery of GluN2A-selective NMDA receptor positive allosteric modulators (PAMs): tuning deactivation kinetics via structure-based design. J Med Chem 59(6):2760–2779. doi:10.1021/acs.jmedchem.5b02010

    Article  CAS  PubMed  Google Scholar 

  170. Kvist T, Steffensen TB, Greenwood JR, Mehrzad Tabrizi F, Hansen KB, Gajhede M, Pickering DS, Traynelis SF, Kastrup JS, Brauner-Osborne H (2013) Crystal structure and pharmacological characterization of a novel N-methyl-D-aspartate (NMDA) receptor antagonist at the GluN1 glycine binding site. J Biol Chem 288(46):33124–33135. doi:10.1074/jbc.M113.480210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Pohlsgaard J, Frydenvang K, Madsen U, Kastrup JS (2011) Lessons from more than 80 structures of the GluA2 ligand-binding domain in complex with agonists, antagonists and allosteric modulators. Neuropharmacology 60(1):135–150. doi:10.1016/j.neuropharm.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  172. Kumar J, Mayer ML (2013) Functional insights from glutamate receptor ion channel structures. Annu Rev Physiol 75:313–337. doi:10.1146/annurev-physiol-030212-183711

    Article  CAS  PubMed  Google Scholar 

  173. Karakas E, Regan MC, Furukawa H (2015) Emerging structural insights into the function of ionotropic glutamate receptors. Trends Biochem Sci 40(6):328–337. doi:10.1016/j.tibs.2015.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Borschel WF, Cummings KA, Tindell LK, Popescu GK (2015) Kinetic contributions to gating by interactions unique to N-methyl-D-aspartate (NMDA) receptors. J Biol Chem 290(44):26846–26855. doi:10.1074/jbc.M115.678656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Aizenman E, Lipton SA, Loring RH (1989) Selective modulation of NMDA responses by reduction and oxidation. Neuron 2(3):1257–1263

    Article  CAS  PubMed  Google Scholar 

  176. Kohr G, Eckardt S, Luddens H, Monyer H, Seeburg PH (1994) NMDA receptor channels: subunit-specific potentiation by reducing agents. Neuron 12(5):1031–1040

    Article  CAS  PubMed  Google Scholar 

  177. Choi YB, Lipton SA (2000) Redox modulation of the NMDA receptor. Cell Mol Life Sci 57(11):1535–1541

    Article  CAS  PubMed  Google Scholar 

  178. Tang LH, Aizenman E (1993) The modulation of N-methyl-D-aspartate receptors by redox and alkylating reagents in rat cortical neurones in vitro. J Physiol 465:303–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sullivan JM, Traynelis SF, Chen HS, Escobar W, Heinemann SF, Lipton SA (1994) Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13(4):929–936

    Article  CAS  PubMed  Google Scholar 

  180. Choi Y, Chen HV, Lipton SA (2001) Three pairs of cysteine residues mediate both redox and zn2+ modulation of the nmda receptor. J Neurosci 21(2):392–400

    CAS  PubMed  Google Scholar 

  181. Talukder I, Kazi R, Wollmuth LP (2011) GluN1-specific redox effects on the kinetic mechanism of NMDA receptor activation. Biophys J 101(10):2389–2398. doi:10.1016/j.bpj.2011.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Paganelli MA, Kussius CL, Popescu GK (2013) Role of cross-cleft contacts in NMDA receptor gating. PLoS One 8(11):e80953. doi:10.1371/journal.pone.0080953

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kalbaugh TL, VanDongen HM, VanDongen AM (2004) Ligand-binding residues integrate affinity and efficacy in the NMDA receptor. Mol Pharmacol 66(2):209–219. doi:10.1124/mol.66.2.209

    Article  CAS  PubMed  Google Scholar 

  184. Dolino DM, Cooper D, Ramaswamy S, Jaurich H, Landes CF, Jayaraman V (2015) Structural dynamics of the glycine-binding domain of the N-methyl-D-aspartate receptor. J Biol Chem 290(2):797–804. doi:10.1074/jbc.M114.605436

    Article  CAS  PubMed  Google Scholar 

  185. Dolino DM, Rezaei Adariani S, Shaikh SA, Jayaraman V, Sanabria H (2016) Conformational selection and submillisecond dynamics of the ligand-binding domain of the N-methyl-d-aspartate receptor. J Biol Chem 291(31):16175–16185. doi:10.1074/jbc.M116.721274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Dai J, Wollmuth LP, Zhou HX (2015) Mechanism-based mathematical model for gating of ionotropic glutamate receptors. J Phys Chem B 119(34):10934–10940. doi:10.1021/acs.jpcb.5b00521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dai J, Zhou HX (2015) Reduced curvature of ligand-binding domain free-energy surface underlies partial agonism at NMDA receptors. Structure 23(1):228–236. doi:10.1016/j.str.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  188. Regan MC, Romero-Hernandez A, Furukawa H (2015) A structural biology perspective on NMDA receptor pharmacology and function. Curr Opin Struct Biol 33:68–75. doi:10.1016/j.sbi.2015.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Krupp JJ, Vissel B, Heinemann SF, Westbrook GL (1998) N-terminal domains in the NR2 subunit control desensitization of NMDA receptors. Neuron 20(2):317–327

    Article  CAS  PubMed  Google Scholar 

  190. Ogden KK, Traynelis SF (2013) Contribution of the M1 transmembrane helix and pre-M1 region to positive allosteric modulation and gating of N-methyl-D-aspartate receptors. Mol Pharmacol 83(5):1045–1056. doi:10.1124/mol.113.085209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Villarroel A, Regalado MP, Lerma J (1998) Glycine-independent NMDA receptor desensitization: localization of structural determinants. Neuron 20(2):329–339

    Article  CAS  PubMed  Google Scholar 

  192. Ren H, Honse Y, Karp BJ, Lipsky RH, Peoples RW (2003) A site in the fourth membrane-associated domain of the N-methyl-D-aspartate receptor regulates desensitization and ion channel gating. J Biol Chem 278(1):276–283

    Article  CAS  PubMed  Google Scholar 

  193. Schneggenburger R, Ascher P (1997) Coupling of permeation and gating in an NMDA-channel pore mutant. Neuron 18(1):167–177

    Article  CAS  PubMed  Google Scholar 

  194. Alsaloum M, Kazi R, Gan Q, Amin J, Wollmuth LP (2016) A molecular determinant of subtype-specific desensitization in ionotropic glutamate receptors. J Neurosci 36(9):2617–2622. doi:10.1523/JNEUROSCI.2667-15.2016

    Article  PubMed  PubMed Central  Google Scholar 

  195. Kazi R, Gan Q, Talukder I, Markowitz M, Salussolia CL, Wollmuth LP (2013) Asynchronous movements prior to pore opening in NMDA receptors. J Neurosci 33(29):12052–12066. doi:10.1523/JNEUROSCI.5780-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Talukder I, Borker P, Wollmuth LP (2010) Specific sites within the ligand-binding domain and ion channel linkers modulate NMDA receptor gating. J Neurosci 30(35):11792–11804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chang HR, Kuo CC (2008) The activation gate and gating mechanism of the NMDA receptor. J Neurosci 28(7):1546–1556. doi:10.1523/JNEUROSCI.3485-07.2008

    Article  CAS  PubMed  Google Scholar 

  198. Yuan H, Erreger K, Dravid SM, Traynelis SF (2005) Conserved structural and functional control of N-methyl-D-aspartate receptor gating by transmembrane domain M3. J Biol Chem 280(33):29708–29716

    Article  CAS  PubMed  Google Scholar 

  199. Jones KS, VanDongen HMA, VanDongen AMJ (2002) The NMDA receptor M3 segment is a conserved transduction element coupling ligand binding to channel opening. J Neurosci 22(6):2044–2053

    CAS  PubMed  Google Scholar 

  200. Sobolevsky AI, Beck C, Wollmuth LP (2002) Molecular rearrangements of the extracellular vestibule in NMDAR channels during gating. Neuron 33(1):75–85

    Article  CAS  PubMed  Google Scholar 

  201. Beck C, Wollmuth LP, Seeburg PH, Sakmann B, Kuner T (1999) NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines. Neuron 22(3):559–570

    Article  CAS  PubMed  Google Scholar 

  202. Schorge S, Elenes S, Colquhoun D (2005) Maximum likelihood fitting of single channel NMDA activity with a mechanism composed of independent dimers of subunits. J Physiol 569(Pt 2):395–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Popescu G, Robert A, Howe JR, Auerbach A (2004) Reaction mechanism determines NMDA receptor response to repetitive stimulation. Nature 430(7001):790–793

    Article  CAS  PubMed  Google Scholar 

  204. Banke TG, Traynelis SF (2003) Activation of NR1/NR2B NMDA receptors. Nat Neurosci 6(2):144–152. doi:10.1038/nn1000

    Article  CAS  PubMed  Google Scholar 

  205. Zhou Y, Auerbach A (2005) Gating reaction mechanisms for NMDA receptor channels. J Neurosci 25(35):7914–7923. doi:10.1523/Jneurosci.1471-05.2005

    Article  CAS  PubMed  Google Scholar 

  206. Kussius CL, Popescu GK (2009) Kinetic basis of partial agonism at NMDA receptors. Nat Neurosci 12(9):1114–U1110. doi:10.1038/nn.2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Dravid SM, Prakash A, Traynelis SF (2008) Activation of recombinant NR1/NR2C NMDA receptors. J Physiol 586(18):4425–4439. doi:10.1113/jphysiol.2008.158634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Amico-Ruvio SA, Popescu GK (2010) Stationary gating of GluN1/GluN2B receptors in intact membrane patches. Biophys J 98(7):1160–1169. doi:10.1016/j.bpj.2009.12.4276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Benveniste M, Clements J, Vyklicky L Jr, Mayer ML (1990) A kinetic analysis of the modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J Physiol 428:333–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Banke TG, Dravid SM, Traynelis SF (2005) Protons trap NR1/NR2B NMDA receptors in a nonconducting state. J Neurosci 25(1):42–51. doi:10.1523/JNEUROSCI.3154-04.2005

    Article  CAS  PubMed  Google Scholar 

  211. Erreger K, Traynelis SF (2008) Zinc inhibition of rat NR1/NR2A N-methyl-D-aspartate receptors. J Physiol 586(3):763–778. doi:10.1113/jphysiol.2007.143941

    Article  CAS  PubMed  Google Scholar 

  212. Amico-Ruvio SA, Murthy SE, Smith TP, Popescu GK (2011) Zinc effects on NMDA receptor gating kinetics. Biophys J 100(8):1910–1918. doi:10.1016/j.bpj.2011.02.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kussius CL, Kaur N, Popescu GK (2009) Pregnanolone sulfate promotes desensitization of activated NMDA receptors. J Neurosci 29(21):6819–6827. doi:10.1523/JNEUROSCI.0281-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Paganelli MA, Popescu GK (2015) Actions of bupivacaine, a widely used local anesthetic, on NMDA receptor responses. J Neurosci 35(2):831–842. doi:10.1523/JNEUROSCI.3578-14.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Dravid SM, Erreger K, Yuan H, Nicholson K, Le P, Lyuboslavsky P, Almonte A, Murray E, Mosely C, Barber J, French A, Balster R, Murray TF, Traynelis SF (2007) Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block. J Physiol 581(Pt 1):107–128. doi:10.1113/jphysiol.2006.124958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Blanpied TA, Boeckman FA, Aizenman E, Johnson JW (1997) Trapping channel block of NMDA-activated responses by amantadine and memantine. J Neurophysiol 77(1):309–323

    CAS  PubMed  Google Scholar 

  217. Blanpied TA, Clarke RJ, Johnson JW (2005) Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J Neurosci 25(13):3312–3322. doi:10.1523/JNEUROSCI.4262-04.2005

    Article  CAS  PubMed  Google Scholar 

  218. Huettner JE, Bean BP (1988) Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci U S A 85(4):1307–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280(5369):1596–1599

    Article  CAS  PubMed  Google Scholar 

  220. Jin R, Banke TG, Mayer ML, Traynelis SF, Gouaux E (2003) Structural basis for partial agonist action at ionotropic glutamate receptors. Nat Neurosci 6(8):803–810. doi:10.1038/nn1091

    Article  CAS  PubMed  Google Scholar 

  221. Kristensen AS, Jenkins MA, Banke TG, Schousboe A, Makino Y, Johnson RC, Huganir R, Traynelis SF (2011) Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat Neurosci 14(6):727–735. doi:10.1038/nn.2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Erreger K, Geballe MT, Dravid SM, Snyder JP, Wyllie DJA, Traynelis SF (2005) Mechanism of partial agonism at NMDA receptors for a conformationally restricted glutamate analog. J Neurosci 25(34):7858–7866. doi:10.1523/Jneurosci.1613-05.2005

    Article  CAS  PubMed  Google Scholar 

  223. Wollmuth LP, Sobolevsky AI (2004) Structure and gating of the glutamate receptor ion channel. Trends Neurosci 27(6):321–328. doi:10.1016/j.tins.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  224. Sobolevsky AI, Rooney L, Wollmuth LP (2002) Staggering of subunits in NMDAR channels. Biophys J 83(6):3304–3314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Wollmuth LP, Kuner T, Seeburg PH, Sakmann B (1996) Differential contribution of the NR1- and NR2A-subunits to the selectivity filter of recombinant NMDA receptor channels. J Physiol 491(Pt 3):779–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Burnashev N, Schoepfer R, Monyer H, Ruppersberg JP, Gunther W, Seeburg PH, Sakmann B (1992) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 257(5075):1415–1419

    Article  CAS  PubMed  Google Scholar 

  227. Wollmuth LP, Kuner T, Sakmann B (1998) Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+. J Physiol 506(Pt 1):13–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Sharma G, Stevens CF (1996) Interactions between two divalent ion binding sites in N-methyl-D-aspartate receptor channels. Proc Natl Acad Sci U S A 93(24):14170–14175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Schneggenburger R (1996) Simultaneous measurement of Ca2+ influx and reversal potentials in recombinant N-methyl-D-aspartate receptor channels. Biophys J 70(5):2165–2174. doi:10.1016/S0006-3495(96)79782-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Schneggenburger R (1998) Altered voltage dependence of fractional Ca2+ current in N-methyl-D-aspartate channel pore mutants with a decreased Ca2+ permeability. Biophys J 74(4):1790–1794. doi:10.1016/S0006-3495(98)77889-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Burnashev N, Zhou Z, Neher E, Sakmann B (1995) Fractional calcium currents through recombinant Glur channels of the Nmda, Ampa and kainate receptor subtypes. J Physiol 485(2):403–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Jatzke C, Watanabe J, Wollmuth LP (2002) Voltage and concentration dependence of Ca(2+) permeability in recombinant glutamate receptor subtypes. J Physiol 538(Pt 1):25–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Premkumar LS, Auerbach A (1996) Identification of a high affinity divalent cation binding site near the entrance of the NMDA receptor channel. Neuron 16(4):869–880

    Article  CAS  PubMed  Google Scholar 

  234. Premkumar LS, Qin F, Auerbach A (1997) Subconductance states of a mutant NMDA receptor channel kinetics, calcium, and voltage dependence. J Gen Physiol 109(2):181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Wyllie DJ, Behe P, Nassar M, Schoepfer R, Colquhoun D (1996) Single-channel currents from recombinant NMDA NR1a/NR2D receptors expressed in Xenopus oocytes. Proc Biol Sci 263(1373):1079–1086. doi:10.1098/rspb.1996.0159

    Article  CAS  PubMed  Google Scholar 

  236. Watanabe J, Beck C, Kuner T, Premkumar LS, Wollmuth LP (2002) DRPEER: a motif in the extracellular vestibule conferring high Ca2+ flux rates in NMDA receptor channels. J Neurosci 22(23):10209–10216

    CAS  PubMed  Google Scholar 

  237. Wada A, Takahashi H, Lipton SA, Chen HS (2006) NR3A modulates the outer vestibule of the “NMDA” receptor channel. J Neurosci 26(51):13156–13166. doi:10.1523/JNEUROSCI.2552-06.2006

    Article  CAS  PubMed  Google Scholar 

  238. Kawajiri S, Dingledine R (1993) Multiple structural determinants of voltage-dependent magnesium block in recombinant NMDA receptors. Neuropharmacology 32(11):1203–1211

    Article  CAS  PubMed  Google Scholar 

  239. Vogt K, Mellor J, Tong G, Nicoll R (2000) The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26(1):187–196

    Article  CAS  PubMed  Google Scholar 

  240. Christine CW, Choi DW (1990) Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons. J Neurosci 10(1):108–116

    CAS  PubMed  Google Scholar 

  241. Clarke RJ, Johnson JW (2006) NMDA receptor NR2 subunit dependence of the slow component of magnesium unblock. J Neurosci 26(21):5825–5834. doi:10.1523/JNEUROSCI.0577-06.2006

    Article  CAS  PubMed  Google Scholar 

  242. Siegler Retchless B, Gao W, Johnson JW (2012) A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction. Nat Neurosci 15(3):406–413., S401-402. doi:10.1038/nn.3025

    Article  PubMed  CAS  Google Scholar 

  243. Qian A, Johnson JW (2006) Permeant ion effects on external Mg2+ block of NR1/2D NMDA receptors. J Neurosci 26(42):10899–10910

    Article  CAS  PubMed  Google Scholar 

  244. Antonov SM, Johnson JW (1999) Permeant ion regulation of N-methyl-D-aspartate receptor channel block by Mg(2+). Proc Natl Acad Sci U S A 96(25):14571–14576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Qian A, Antonov SM, Johnson JW (2002) Modulation by permeant ions of Mg(2+) inhibition of NMDA-activated whole-cell currents in rat cortical neurons. J Physiol 538(Pt 1):65–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Zhu Y, Auerbach A (2001) K(+) occupancy of the N-methyl-d-aspartate receptor channel probed by Mg(2+) block. J Gen Physiol 117(3):287–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Zhu Y, Auerbach A (2001) Na(+) occupancy and Mg(2+) block of the n-methyl-d-aspartate receptor channel. J Gen Physiol 117(3):275–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Brackley PT, Bell DR, Choi SK, Nakanishi K, Usherwood PN (1993) Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins. J Pharmacol Exp Ther 266(3):1573–1580

    CAS  PubMed  Google Scholar 

  249. Parsons CG, Quack G, Bresink I, Baran L, Przegalinski E, Kostowski W, Krzascik P, Hartmann S, Danysz W (1995) Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 34(10):1239–1258

    Article  CAS  PubMed  Google Scholar 

  250. Sobolevsky AI (1999) Two-component blocking kinetics of open NMDA channels by organic cations. Biochim Biophys Acta 1416(1-2):69–91

    Article  CAS  PubMed  Google Scholar 

  251. Barygin OI, Gmiro VE, Kim K, Magazanik LG, Tikhonov DB (2009) Blockade of NMDA receptor channels by 9-aminoacridine and its derivatives. Neurosci Lett 451(1):29–33. doi:10.1016/j.neulet.2008.12.036

    Article  CAS  PubMed  Google Scholar 

  252. Bolshakov KV, Gmiro VE, Tikhonov DB, Magazanik LG (2003) Determinants of trapping block of N-methyl-d-aspartate receptor channels. J Neurochem 87(1):56–65

    Article  CAS  PubMed  Google Scholar 

  253. Benveniste M, Mayer ML (1995) Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine. J Physiol 483(Pt 2):367–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Johnson JW, Glasgow NG, Povysheva NV (2015) Recent insights into the mode of action of memantine and ketamine. Curr Opin Pharmacol 20:54–63. doi:10.1016/j.coph.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  255. Chen HS, Lipton SA (1997) Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J Physiol 499(Pt 1):27–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Mealing GA, Lanthorn TH, Murray CL, Small DL, Morley P (1999) Differences in degree of trapping of low-affinity uncompetitive N-methyl-D-aspartic acid receptor antagonists with similar kinetics of block. J Pharmacol Exp Ther 288(1):204–210

    CAS  PubMed  Google Scholar 

  257. Kotermanski SE, Wood JT, Johnson JW (2009) Memantine binding to a superficial site on NMDA receptors contributes to partial trapping. J Physiol 587(Pt 19):4589–4604. doi:10.1113/jphysiol.2009.176297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Sobolevsky AI, Yelshansky MV (2000) The trapping block of NMDA receptor channels in acutely isolated rat hippocampal neurones. J Physiol 526(Pt 3):493–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Kotermanski SE, Johnson JW (2009) Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J Neurosci 29(9):2774–2779. doi:10.1523/JNEUROSCI.3703-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Parsons CG, Gruner R, Rozental J, Millar J, Lodge D (1993) Patch clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantan). Neuropharmacology 32(12):1337–1350

    Article  CAS  PubMed  Google Scholar 

  261. Chen HS, Lipton SA (2006) The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem 97(6):1611–1626. doi:10.1111/j.1471-4159.2006.03991.x

    Article  CAS  PubMed  Google Scholar 

  262. Karakas E, Simorowski N, Furukawa H (2009) Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J 28(24):3910–3920. doi:10.1038/emboj.2009.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Karakas E, Simorowski N, Furukawa H (2011) Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 475(7355):249–253. doi:10.1038/nature10180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Sobolevsky AI (2015) Structure and gating of tetrameric glutamate receptors. J Physiol 593(1):29–38. doi:10.1113/jphysiol.2013.264911

    Article  CAS  PubMed  Google Scholar 

  265. Meyerson JR, Kumar J, Chittori S, Rao P, Pierson J, Bartesaghi A, Mayer ML, Subramaniam S (2014) Structural mechanism of glutamate receptor activation and desensitization. Nature 514(7522):328–334. doi:10.1038/nature13603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Hansen KB, Furukawa H, Traynelis SF (2010) Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol Pharmacol 78(4):535–549. doi:10.1124/mol.110.067157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Dutta A, Shrivastava IH, Sukumaran M, Greger IH, Bahar I (2012) Comparative dynamics of NMDA- and AMPA-glutamate receptor N-terminal domains. Structure 20(11):1838–1849. doi:10.1016/j.str.2012.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Sukumaran M, Rossmann M, Shrivastava I, Dutta A, Bahar I, Greger IH (2011) Dynamics and allosteric potential of the AMPA receptor N-terminal domain. EMBO J 30(5):972–982. doi:10.1038/emboj.2011.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Pasternack A, Coleman SK, Jouppila A, Mottershead DG, Lindfors M, Pasternack M, Keinanen K (2002) Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels lacking the N-terminal domain. J Biol Chem 277(51):49662–49667. doi:10.1074/jbc.M208349200

    Article  CAS  PubMed  Google Scholar 

  270. Gielen M, Siegler Retchless B, Mony L, Johnson JW, Paoletti P (2009) Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459(7247):703–707. doi:10.1038/nature07993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Zhu S, Stroebel D, Yao CA, Taly A, Paoletti P (2013) Allosteric signaling and dynamics of the clamshell-like NMDA receptor GluN1 N-terminal domain. Nat Struct Mol Biol 20(4):477–485. doi:10.1038/nsmb.2522

    Article  CAS  PubMed  Google Scholar 

  272. Gielen M, Le Goff A, Stroebel D, Johnson JW, Neyton J, Paoletti P (2008) Structural rearrangements of NR1/NR2A NMDA receptors during allosteric inhibition. Neuron 57(1):80–93. doi:10.1016/j.neuron.2007.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Zhu S, Riou M, Yao CA, Carvalho S, Rodriguez PC, Bensaude O, Paoletti P, Ye S (2014) Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces. Proc Natl Acad Sci U S A 111(16):6081–6086. doi:10.1073/pnas.1318808111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Choi YB, Lipton SA (1999) Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 23(1):171–180

    Article  CAS  PubMed  Google Scholar 

  275. Fayyazuddin A, Villarroel A, Le Goff A, Lerma J, Neyton J (2000) Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors. Neuron 25(3):683–694

    Article  CAS  PubMed  Google Scholar 

  276. Low CM, Zheng F, Lyuboslavsky P, Traynelis SF (2000) Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors. Proc Natl Acad Sci U S A 97(20):11062–11067. doi:10.1073/pnas.180307497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Williams K (1996) Separating dual effects of zinc at recombinant N-methyl-D-aspartate receptors. Neurosci Lett 215(1):9–12

    Article  CAS  PubMed  Google Scholar 

  278. Rachline J, Perin-Dureau F, Le Goff A, Neyton J, Paoletti P (2005) The micromolar zinc-binding domain on the NMDA receptor subunit NR2B. J Neurosci 25(2):308–317. doi:10.1523/JNEUROSCI.3967-04.2005

    Article  CAS  PubMed  Google Scholar 

  279. Paoletti P, Perin-Dureau F, Fayyazuddin A, Le Goff A, Callebaut I, Neyton J (2000) Molecular organization of a zinc binding n-terminal modulatory domain in a NMDA receptor subunit. Neuron 28(3):911–925

    Article  CAS  PubMed  Google Scholar 

  280. Stroebel D, Buhl DL, Knafels JD, Chanda PK, Green M, Sciabola S, Mony L, Paoletti P, Pandit J (2016) A novel binding mode reveals two distinct classes of NMDA receptor GluN2B-selective antagonists. Mol Pharmacol 89:541. doi:10.1124/mol.115.103036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Burger PB, Yuan H, Karakas E, Geballe M, Furukawa H, Liotta DC, Snyder JP, Traynelis SF (2012) Mapping the binding of GluN2B-selective N-methyl-D-aspartate receptor negative allosteric modulators. Mol Pharmacol 82(2):344–359. doi:10.1124/mol.112.078568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Mony L, Zhu S, Carvalho S, Paoletti P (2011) Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines. EMBO J 30(15):3134–3146. doi:10.1038/emboj.2011.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Sirrieh RE, MacLean DM, Jayaraman V (2015) Subtype-dependent N-methyl-D-aspartate receptor amino-terminal domain conformations and modulation by spermine. J Biol Chem 290(20):12812–12820. doi:10.1074/jbc.M115.649723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Paoletti P, Neyton J, Ascher P (1995) Glycine-independent and subunit-specific potentiation of NMDA responses by extracellular Mg2+. Neuron 15(5):1109–1120

    Article  CAS  PubMed  Google Scholar 

  285. Meddows E, Le Bourdelles B, Grimwood S, Wafford K, Sandhu S, Whiting P, McIlhinney RAJ (2001) Identification of molecular determinants that are important in the assembly of N-methyl-D-aspartate receptors. J Biol Chem 276(22):18795–18803. doi:10.1074/jbc.M101382200

    Article  CAS  PubMed  Google Scholar 

  286. Schorge S, Colquhoun D (2003) Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J Neurosci 23(4):1151–1158

    CAS  PubMed  Google Scholar 

  287. Papadakis M, Hawkins LM, Stephenson FA (2004) Appropriate NR1-NR1 disulfide-linked homodimer formation is requisite for efficient expression of functional, cell surface N-methyl-D-aspartate NR1/NR2 receptors. J Biol Chem 279(15):14703–14712

    Article  CAS  PubMed  Google Scholar 

  288. Qiu S, Hua YL, Yang F, Chen YZ, Luo JH (2005) Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer. J Biol Chem 280(26):24923–24930

    Article  CAS  PubMed  Google Scholar 

  289. Schuler T, Mesic I, Madry C, Bartholomaus I, Laube B (2008) Formation of NR1/NR2 and NR1/NR3 heterodimers constitutes the initial step in N-methyl-D-aspartate receptor assembly. J Biol Chem 283(1):37–46. doi:10.1074/jbc.M703539200

    Article  PubMed  CAS  Google Scholar 

  290. Atlason PT, Garside ML, Meddows E, Whiting P, McIlhinney RA (2007) N-Methyl-D-aspartate (NMDA) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor. J Biol Chem 282(35):25299–25307. doi:10.1074/jbc.M702778200

    Article  CAS  PubMed  Google Scholar 

  291. Farina AN, Blain KY, Maruo T, Kwiatkowski W, Choe S, Nakagawa T (2011) Separation of domain contacts is required for heterotetrameric assembly of functional NMDA receptors. J Neurosci 31(10):3565–3579. doi:10.1523/JNEUROSCI.6041-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Greger IH, Ziff EB, Penn AC (2007) Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci 30(8):407–416. doi:10.1016/j.tins.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  293. Sukumaran M, Penn AC, Greger IH (2012) AMPA receptor assembly: atomic determinants and built-in modulators. Adv Exp Med Biol 970:241–264. doi:10.1007/978-3-7091-0932-8_11

    Article  CAS  PubMed  Google Scholar 

  294. Qiu S, Zhang XM, Cao JY, Yang W, Yan YG, Shan L, Zheng J, Luo JH (2009) An endoplasmic reticulum retention signal located in the extracellular amino-terminal domain of the NR2A subunit of N-Methyl-D-aspartate receptors. J Biol Chem 284(30):20285–20298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Mayer ML, Vyklicky L Jr, Clements J (1989) Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature 338(6214):425–427. doi:10.1038/338425a0

    Article  CAS  PubMed  Google Scholar 

  296. Lester RAJ, Tong G, Jahr CE (1993) Interactions between the glycine and glutamate binding-sites of the Nmda receptor. J Neurosci 13(3):1088–1096

    CAS  PubMed  Google Scholar 

  297. Chen N, Moshaver A, Raymond LA (1997) Differential sensitivity of recombinant N-methyl-D-aspartate receptor subtypes to zinc inhibition. Mol Pharmacol 51(6):1015–1023

    CAS  PubMed  Google Scholar 

  298. Erreger K, Traynelis SF (2005) Allosteric interaction between zinc and glutamate binding domains on NR2A causes desensitization of NMDA receptors. J Physiol 569(2):381–393. doi:10.1113/jphysiol.2005.095497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Zheng F, Erreger K, Low CM, Banke T, Lee CJ, Conn PJ, Traynelis SF (2001) Allosteric interaction between the amino terminal domain and the ligand binding domain of NR2A. Nat Neurosci 4(9):894–901

    Article  CAS  PubMed  Google Scholar 

  300. Clark GD, Clifford DB, Zorumski CF (1990) The effect of agonist concentration, membrane voltage and calcium on N-methyl-D-aspartate receptor desensitization. Neuroscience 39(3):787–797

    Article  CAS  PubMed  Google Scholar 

  301. Legendre P, Rosenmund C, Westbrook GL (1993) Inactivation of NMDA channels in cultured hippocampal neurons by intracellular calcium. J Neurosci 13(2):674–684

    CAS  PubMed  Google Scholar 

  302. Rosenmund C, Feltz A, Westbrook GL (1995) Calcium-dependent inactivation of synaptic NMDA receptors in hippocampal neurons. J Neurophysiol 73(1):427–430

    CAS  PubMed  Google Scholar 

  303. Vyklicky L Jr (1993) Calcium-mediated modulation of N-methyl-D-aspartate (NMDA) responses in cultured rat hippocampal neurones. J Physiol 470:575–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Krupp JJ, Vissel B, Heinemann SF, Westbrook GL (1996) Calcium-dependent inactivation of recombinant N-methyl-D-aspartate receptors is NR2 subunit specific. Mol Pharmacol 50(6):1680–1688

    CAS  PubMed  Google Scholar 

  305. Medina I, Filippova N, Charton G, Rougeole S, Ben-Ari Y, Khrestchatisky M, Bregestovski P (1995) Calcium-dependent inactivation of heteromeric NMDA receptor-channels expressed in human embryonic kidney cells. J Physiol 482(Pt 3):567–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Rosenmund C, Westbrook GL (1993) Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10(5):805–814

    Article  CAS  PubMed  Google Scholar 

  307. Ehlers MD, Fung ET, O’Brien RJ, Huganir RL (1998) Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci 18(2):720–730

    CAS  PubMed  Google Scholar 

  308. Ehlers MD, Zhang S, Bernhadt JP, Huganir RL (1996) Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84(5):745–755

    Article  CAS  PubMed  Google Scholar 

  309. Krupp JJ, Vissel B, Thomas CG, Heinemann SF, Westbrook GL (1999) Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of NMDA receptors. J Neurosci 19(4):1165–1178

    CAS  PubMed  Google Scholar 

  310. Zhang S, Ehlers MD, Bernhardt JP, Su CT, Huganir RL (1998) Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron 21(2):443–453

    Article  CAS  PubMed  Google Scholar 

  311. Sather W, Dieudonne S, MacDonald JF, Ascher P (1992) Activation and desensitization of N-methyl-D-aspartate receptors in nucleated outside-out patches from mouse neurones. J Physiol 450:643–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Sather W, Johnson JW, Henderson G, Ascher P (1990) Glycine-insensitive desensitization of NMDA responses in cultured mouse embryonic neurons. Neuron 4(5):725–731

    Article  CAS  PubMed  Google Scholar 

  313. Chen NS, Li B, Murphy TH, Raymond LA (2004) Site within N-methyl-D-aspartate receptor pore modulates channel Gating. Mol Pharmacol 65(1):157–164. doi:10.1124/mol.65.1.157

    Article  CAS  PubMed  Google Scholar 

  314. Hu B, Zheng F (2005) Molecular determinants of glycine-independent desensitization of NR1/NR2A receptors. J Pharmacol Exp Ther 313(2):563–569. doi:10.1124/jpet.104.080168

    Article  CAS  PubMed  Google Scholar 

  315. Giffard RG, Monyer H, Christine CW, Choi DW (1990) Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res 506(2):339–342

    Article  CAS  PubMed  Google Scholar 

  316. Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345(6273):347–350

    Article  CAS  PubMed  Google Scholar 

  317. Traynelis SF, Cull-Candy SG (1991) Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J Physiol 433:727–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Vyklicky L Jr, Vlachova V, Krusek J (1990) The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurones. J Physiol 430:497–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Rev 83(4):1183–1221. doi:10.1152/physrev.00010.2003

    Article  CAS  PubMed  Google Scholar 

  320. Low CM, Lyuboslavsky P, French A, Le P, Wyatte K, Thiel WH, Marchan EM, Igarashi K, Kashiwagi K, Gernert K, Williams K, Traynelis SF, Zheng F (2003) Molecular determinants of proton-sensitive N-methyl-D-aspartate receptor gating. Mol Pharmacol 63(6):1212–1222. doi:10.1124/mol.63.6.1212

    Article  CAS  PubMed  Google Scholar 

  321. Kashiwagi K, Fukuchi J, Chao J, Igarashi K, Williams K (1996) An aspartate residue in the extracellular loop of the N-methyl-D-aspartate receptor controls sensitivity to spermine and protons. Mol Pharmacol 49(6):1131–1141

    CAS  PubMed  Google Scholar 

  322. Kashiwagi K, Pahk AJ, Masuko T, Igarashi K, Williams K (1997) Block and modulation of N-methyl-D-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits. Mol Pharmacol 52(4):701–713

    CAS  PubMed  Google Scholar 

  323. Bhatt JM, Prakash A, Suryavanshi PS, Dravid SM (2013) Effect of ifenprodil on GluN1/GluN2B N-methyl-D-aspartate receptor gating. Mol Pharmacol 83(1):9–21. doi:10.1124/mol.112.080952

    Article  CAS  PubMed  Google Scholar 

  324. Anderson CT, Radford RJ, Zastrow ML, Zhang DY, Apfel UP, Lippard SJ, Tzounopoulos T (2015) Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc. Proc Natl Acad Sci U S A 112(20):E2705–E2714. doi:10.1073/pnas.1503348112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Sanz-Clemente A, Nicoll RA, Roche KW (2013) Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist 19(1):62–75. doi:10.1177/1073858411435129

    Article  CAS  PubMed  Google Scholar 

  326. Lussier MP, Sanz-Clemente A, Roche KW (2015) Dynamic Regulation of N-Methyl-d-aspartate (NMDA) and alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors by Posttranslational Modifications. J Biol Chem 290(48):28596–28603. doi:10.1074/jbc.R115.652750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Sans N, Petralia RS, Wang YX, Blahos J, Hell JW, Wenthold RJ (2000) A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J Neurosci 20(3):1260–1271

    CAS  PubMed  Google Scholar 

  328. Groc L, Heine M, Cousins SL, Stephenson FA, Lounis B, Cognet L, Choquet D (2006) NMDA receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci U S A 103(49):18769–18774. doi:10.1073/pnas.0605238103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Steigerwald F, Schulz TW, Schenker LT, Kennedy MB, Seeburg PH, Kohr G (2000) C-Terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors. J Neurosci 20(12):4573–4581

    CAS  PubMed  Google Scholar 

  330. Martel MA, Wyllie DJ, Hardingham GE (2009) In developing hippocampal neurons, NR2B-containing N-methyl-D-aspartate receptors (NMDARs) can mediate signaling to neuronal survival and synaptic potentiation, as well as neuronal death. Neuroscience 158(1):334–343. doi:10.1016/j.neuroscience.2008.01.080

    Article  CAS  PubMed  Google Scholar 

  331. Omkumar RV, Kiely MJ, Rosenstein AJ, Min KT, Kennedy MB (1996) Identification of a phosphorylation site for calcium/calmodulindependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem 271(49):31670–31678

    Article  CAS  PubMed  Google Scholar 

  332. Raveendran R, Devi Suma Priya S, Mayadevi M, Steephan M, Santhoshkumar TR, Cheriyan J, Sanalkumar R, Pradeep KK, James J, Omkumar RV (2009) Phosphorylation status of the NR2B subunit of NMDA receptor regulates its interaction with calcium/calmodulin-dependent protein kinase II. J Neurochem 110(1):92–105. doi:10.1111/j.1471-4159.2009.06108.x

    Article  CAS  PubMed  Google Scholar 

  333. Rellos P, Pike AC, Niesen FH, Salah E, Lee WH, von Delft F, Knapp S (2010) Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation. PLoS Biol 8(7):e1000426. doi:10.1371/journal.pbio.1000426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  334. Strack S, Colbran RJ (1998) Autophosphorylation-dependent targeting of calcium/calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem 273(33):20689–20692

    Article  CAS  PubMed  Google Scholar 

  335. Bayer KU, De Koninck P, Leonard AS, Hell JW, Schulman H (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411(6839):801–805. doi:10.1038/35081080

    Article  CAS  PubMed  Google Scholar 

  336. Bayer KU, LeBel E, McDonald GL, O’Leary H, Schulman H, De Koninck P (2006) Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. J Neurosci 26(4):1164–1174. doi:10.1523/JNEUROSCI.3116-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Otmakhov N, Tao-Cheng JH, Carpenter S, Asrican B, Dosemeci A, Reese TS, Lisman J (2004) Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation. J Neurosci 24(42):9324–9331. doi:10.1523/JNEUROSCI.2350-04.2004

    Article  CAS  PubMed  Google Scholar 

  338. Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13(3):169–182. doi:10.1038/nrn3192

    CAS  PubMed  PubMed Central  Google Scholar 

  339. Chen BS, Roche KW (2007) Regulation of NMDA receptors by phosphorylation. Neuropharmacology 53(3):362–368. doi:10.1016/j.neuropharm.2007.05.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  340. Li S, Tian X, Hartley DM, Feig LA (2006) Distinct roles for Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and Ras-GRF2 in the induction of long-term potentiation and long-term depression. J Neurosci 26(6):1721–1729. doi:10.1523/JNEUROSCI.3990-05.2006

    Article  CAS  PubMed  Google Scholar 

  341. Tian X, Gotoh T, Tsuji K, Lo EH, Huang S, Feig LA (2004) Developmentally regulated role for Ras-GRFs in coupling NMDA glutamate receptors to Ras, Erk and CREB. EMBO J 23(7):1567–1575. doi:10.1038/sj.emboj.7600151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, Ben-Ari Y, Clapham DE, Medina I (2003) The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 40(4):775–784

    Article  CAS  PubMed  Google Scholar 

  343. Dore K, Aow J, Malinow R (2016) The emergence of NMDA receptor metabotropic function: insights from imaging. Front Synaptic Neurosci 8:20. doi:10.3389/fnsyn.2016.00020

    Article  PubMed  PubMed Central  Google Scholar 

  344. Gray JA, Zito K, Hell JW (2016) Non-ionotropic signaling by the NMDA receptor: controversy and opportunity. F1000Res 5. doi:10.12688/f1000research.8366.1

  345. Nong Y, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT, Salter MW (2003) Glycine binding primes NMDA receptor internalization. Nature 422(6929):302–307. doi:10.1038/nature01497

    Article  CAS  PubMed  Google Scholar 

  346. Nabavi S, Kessels HW, Alfonso S, Aow J, Fox R, Malinow R (2013) Metabotropic NMDA receptor function is required for NMDA receptor-dependent long-term depression. Proc Natl Acad Sci U S A 110(10):4027–4032. doi:10.1073/pnas.1219454110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Aow J, Dore K, Malinow R (2015) Conformational signaling required for synaptic plasticity by the NMDA receptor complex. Proc Natl Acad Sci U S A 112(47):14711–14716. doi:10.1073/pnas.1520029112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Williams K (1993) Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor - selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44(4):851–859

    CAS  PubMed  Google Scholar 

  349. Santangelo RM, Acker TM, Zimmerman SS, Katzman BM, Strong KL, Traynelis SF, Liotta DC (2012) Novel NMDA receptor modulators: an update. Expert Opin Ther Pat 22(11):1337–1352. doi:10.1517/13543776.2012.728587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Auberson YP, Allgeier H, Bischoff S, Lingenhoehl K, Moretti R, Schmutz M (2002) 5-phosphonomethylquinoxalinediones as competitive NMDA receptor antagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. Bioorg Med Chem Lett 12(7):1099–1102. doi:10.1016/S0960-894x(02)00074-4. pii S0960-894x(02)00074-4

    Article  CAS  PubMed  Google Scholar 

  351. Frizelle PA, Chen PE, Wyllie DJ (2006) Equilibrium constants for (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquino xalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) acting at recombinant NR1/NR2A and NR1/NR2B N-methyl-D-aspartate receptors: implications for studies of synaptic transmission. Mol Pharmacol 70 (3):1022–1032

    Google Scholar 

  352. Neyton J, Paoletti P (2006) Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J Neurosci 26(5):1331–1333. doi:10.1523/JNEUROSCI.5242-05.2006

    Article  CAS  PubMed  Google Scholar 

  353. Bettini E, Sava A, Griffante C, Carignani C, Buson A, Capelli AM, Negri M, Andreetta F, Senar-Sancho SA, Guiral L, Cardullo F (2010) Identification and characterization of novel NMDA receptor antagonists selective for NR2A- over NR2B-containing receptors. J Pharmacol Exp Ther 335(3):636–644. doi:10.1124/jpet.110.172544

    Article  CAS  PubMed  Google Scholar 

  354. Edman S, McKay S, Macdonald LJ, Samadi M, Livesey MR, Hardingham GE, Wyllie DJ (2012) TCN 201 selectively blocks GluN2A-containing NMDARs in a GluN1 co-agonist dependent but non-competitive manner. Neuropharmacology 63(3):441–449. doi:10.1016/j.neuropharm.2012.04.027

    Article  CAS  PubMed  Google Scholar 

  355. Hansen KB, Ogden KK, Traynelis SF (2012) Subunit-selective allosteric inhibition of glycine binding to NMDA receptors. J Neurosci 32(18):6197–6208. doi:10.1523/JNEUROSCI.5757-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Volkmann RA, Fanger CM, Anderson DR, Sirivolu VR, Paschetto K, Gordon E, Virginio C, Gleyzes M, Buisson B, Steidl E, Mierau SB, Fagiolini M, Menniti FS (2016) MPX-004 and MPX-007: new pharmacological tools to study the physiology of NMDA receptors containing the GluN2A subunit. PLoS One 11(2):e0148129. doi:10.1371/journal.pone.0148129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  357. McKay S, Griffiths NH, Butters PA, Thubron EB, Hardingham GE, Wyllie DJ (2012) Direct pharmacological monitoring of the developmental switch in NMDA receptor subunit composition using TCN 213, a GluN2A-selective, glycine-dependent antagonist. Br J Pharmacol 166(3):924–937. doi:10.1111/j.1476-5381.2011.01748.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Izumi Y, Zorumski CF (2015) Sensitivity of N-methyl-D-aspartate receptor-mediated excitatory postsynaptic potentials and synaptic plasticity to TCN 201 and TCN 213 in rat hippocampal slices. J Pharmacol Exp Ther 352(2):267–273. doi:10.1124/jpet.114.220582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  359. Gipson CD, Reissner KJ, Kupchik YM, Smith AC, Stankeviciute N, Hensley-Simon ME, Kalivas PW (2013) Reinstatement of nicotine seeking is mediated by glutamatergic plasticity. Proc Natl Acad Sci U S A 110(22):9124–9129. doi:10.1073/pnas.1220591110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Bu F, Du R, Li Y, Quinn JP, Wang M (2016) NR2A contributes to genesis and propagation of cortical spreading depression in rats. Sci Rep 6:23576. doi:10.1038/srep23576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Masuko T, Kashiwagi K, Kuno T, Nguyen ND, Pahk AJ, Fukuchi J, Igarashi K, Williams K (1999) A regulatory domain (R1-R2) in the amino terminus of the N-methyl-D-aspartate receptor: effects of spermine, protons, and ifenprodil, and structural similarity to bacterial leucine/isoleucine/valine binding protein. Mol Pharmacol 55(6):957–969

    CAS  PubMed  Google Scholar 

  362. Kew JN, Trube G, Kemp JA (1996) A novel mechanism of activity-dependent NMDA receptor antagonism describes the effect of ifenprodil in rat cultured cortical neurones. J Physiol 497(Pt 3):761–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Chenard BL, Bordner J, Butler TW, Chambers LK, Collins MA, De Costa DL, Ducat MF, Dumont ML, Fox CB, Mena EE et al (1995) (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol: a potent new neuroprotectant which blocks N-methyl-D-aspartate responses. J Med Chem 38(16):3138–3145

    Article  CAS  PubMed  Google Scholar 

  364. Fischer G, Mutel V, Trube G, Malherbe P, Kew JN, Mohacsi E, Heitz MP, Kemp JA (1997) Ro 25-6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. J Pharmacol Exp Ther 283(3):1285–1292

    CAS  PubMed  Google Scholar 

  365. Yuan H, Myers SJ, Wells G, Nicholson KL, Swanger SA, Lyuboslavsky P, Tahirovic YA, Menaldino DS, Ganesh T, Wilson LJ, Liotta DC, Snyder JP, Traynelis SF (2015) Context-Dependent GluN2B-Selective Inhibitors of NMDA Receptor Function Are Neuroprotective with Minimal Side Effects. Neuron 85(6):1305–1318. doi:10.1016/j.neuron.2015.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Hashimoto K, Malchow B, Falkai P, Schmitt A (2013) Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 263(5):367–377. doi:10.1007/s00406-013-0399-y

    Article  PubMed  Google Scholar 

  367. Shipton OA (1633) Paulsen O (2014) GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity. Philos Trans R Soc Lond B Biol Sci 369:20130163. doi:10.1098/rstb.2013.0163

    Article  CAS  Google Scholar 

  368. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188. doi:10.1016/j.pneurobio.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  369. Yurkewicz L, Weaver J, Bullock MR, Marshall LF (2005) The effect of the selective NMDA receptor antagonist traxoprodil in the treatment of traumatic brain injury. J Neurotrauma 22(12):1428–1443. doi:10.1089/neu.2005.22.1428

    Article  PubMed  Google Scholar 

  370. Preskorn S, Macaluso M, Mehra DO, Zammit G, Moskal JR, Burch RM, Group G-CS (2015) Randomized proof of concept trial of GLYX-13, an N-methyl-D-aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J Psychiatr Pract 21(2):140–149. doi:10.1097/01.pra.0000462606.17725.93

    Article  Google Scholar 

  371. Farin A, Marshall LF (2004) Lessons from epidemiologic studies in clinical trials of traumatic brain injury. Acta Neurochir Suppl 89:101–107

    CAS  PubMed  Google Scholar 

  372. Feng B, Morley RM, Jane DE, Monaghan DT (2005) The effect of competitive antagonist chain length on NMDA receptor subunit selectivity. Neuropharmacology 48(3):354–359. doi:10.1016/j.neuropharm.2004.11.004

    Article  CAS  PubMed  Google Scholar 

  373. Feng B, Tse HW, Skifter DA, Morley R, Jane DE, Monaghan DT (2004) Structure-activity analysis of a novel NR2C/NR2D-preferring NMDA receptor antagonist: 1-(phenanthrene-2-carbonyl) piperazine-2,3-dicarboxylic acid. Br J Pharmacol 141(3):508–516. doi:10.1038/sj.bjp.0705644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Buller AL, Monaghan DT (1997) Pharmacological heterogeneity of NMDA receptors: characterization of NR1a/NR2D heteromers expressed in Xenopus oocytes. Eur J Pharmacol 320(1):87–94

    Article  CAS  PubMed  Google Scholar 

  375. Morley RM, Tse HW, Feng B, Miller JC, Monaghan DT, Jane DE (2005) Synthesis and pharmacology of N1-substituted piperazine-2,3-dicarboxylic acid derivatives acting as NMDA receptor antagonists. J Med Chem 48(7):2627–2637

    Article  CAS  PubMed  Google Scholar 

  376. Costa BM, Feng B, Tsintsadze TS, Morley RM, Irvine MW, Tsintsadze V, Lozovaya NA, Jane DE, Monaghan DT (2009) N-methyl-D-aspartate (NMDA) receptor NR2 subunit selectivity of a series of novel piperazine-2,3-dicarboxylate derivatives: preferential blockade of extrasynaptic NMDA receptors in the rat hippocampal CA3-CA1 synapse. J Pharmacol Exp Ther 331(2):618–626. doi:10.1124/jpet.109.156752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Suarez F, Zhao Q, Monaghan DT, Jane DE, Jones S, Gibb AJ (2010) Functional heterogeneity of NMDA receptors in rat substantia nigra pars compacta and reticulata neurones. Eur J Neurosci 32(3):359–367. doi:10.1111/j.1460-9568.2010.07298.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Lozovaya NA, Grebenyuk SE, Tsintsadze T, Feng B, Monaghan DT, Krishtal OA (2004) Extrasynaptic NR2B and NR2D subunits of NMDA receptors shape ‘superslow’ afterburst EPSC in rat hippocampus. J Physiol 558(Pt 2):451–463. doi:10.1113/jphysiol.2004.063792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Harney SC, Jane DE, Anwyl R (2008) Extrasynaptic NR2D-containing NMDARs are recruited to the synapse during LTP of NMDAR-EPSCs. J Neurosci 28(45):11685–11694. doi:10.1523/JNEUROSCI.3035-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Costa BM, Irvine MW, Fang G, Eaves RJ, Mayo-Martin MB, Skifter DA, Jane DE, Monaghan DT (2010) A novel family of negative and positive allosteric modulators of NMDA receptors. J Pharmacol Exp Ther 335(3):614–621. doi:10.1124/jpet.110.174144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Costa BM, Irvine MW, Fang G, Eaves RJ, Mayo-Martin MB, Laube B, Jane DE, Monaghan DT (2012) Structure-activity relationships for allosteric NMDA receptor inhibitors based on 2-naphthoic acid. Neuropharmacology 62(4):1730–1736. doi:10.1016/j.neuropharm.2011.11.019

    Article  CAS  PubMed  Google Scholar 

  382. Mosley CA, Acker TM, Hansen KB, Mullasseril P, Andersen KT, Le P, Vellano KM, Brauner-Osborne H, Liotta DC, Traynelis SF (2010) Quinazolin-4-one derivatives: a novel class of noncompetitive NR2C/D subunit-selective N-methyl-D-aspartate receptor antagonists. J Med Chem 53(15):5476–5490. doi:10.1021/jm100027p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Hansen KB, Traynelis SF (2011) Structural and mechanistic determinants of a novel site for noncompetitive inhibition of GluN2D-containing NMDA receptors. J Neurosci 31(10):3650–3661. doi:10.1523/JNEUROSCI.5565-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Acker TM, Yuan H, Hansen KB, Vance KM, Ogden KK, Jensen HS, Burger PB, Mullasseril P, Snyder JP, Liotta DC, Traynelis SF (2011) Mechanism for noncompetitive inhibition by novel GluN2C/D N-methyl-D-aspartate receptor subunit-selective modulators. Mol Pharmacol 80(5):782–795. doi:10.1124/mol.111.073239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Acker TM, Khatri A, Vance KM, Slabber C, Bacsa J, Snyder JP, Traynelis SF, Liotta DC (2013) Structure-activity relationships and pharmacophore model of a noncompetitive pyrazoline containing class of GluN2C/GluN2D selective antagonists. J Med Chem 56(16):6434–6456. doi:10.1021/jm400652r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Hildebrand ME, Pitcher GM, Harding EK, Li H, Beggs S, Salter MW (2014) GluN2B and GluN2D NMDARs dominate synaptic responses in the adult spinal cord. Sci Rep 4:4094. doi:10.1038/srep04094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  387. Pearlstein E, Gouty-Colomer LA, Michel FJ, Cloarec R, Hammond C (2015) Glutamatergic synaptic currents of nigral dopaminergic neurons follow a postnatal developmental sequence. Front Cell Neurosci 9:210. doi:10.3389/fncel.2015.00210

    Article  PubMed  PubMed Central  Google Scholar 

  388. Ashhad S, Narayanan R (2016) Active dendrites regulate the impact of gliotransmission on rat hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 113(23):E3280–E3289. doi:10.1073/pnas.1522180113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Mullasseril P, Hansen KB, Vance KM, Ogden KK, Yuan H, Kurtkaya NL, Santangelo R, Orr AG, Le P, Vellano KM, Liotta DC, Traynelis SF (2010) A subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors. Nat Commun 1:90. doi:10.1038/ncomms1085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  390. Santangelo Freel RM, Ogden KK, Strong KL, Khatri A, Chepiga KM, Jensen HS, Traynelis SF, Liotta DC (2013) Synthesis and structure activity relationship of tetrahydroisoquinoline-based potentiators of GluN2C and GluN2D containing N-methyl-D-aspartate receptors. J Med Chem 56(13):5351–5381. doi:10.1021/jm400177t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Santangelo Freel RM, Ogden KK, Strong KL, Khatri A, Chepiga KM, Jensen HS, Traynelis SF, Liotta DC (2014) Correction to Synthesis and Structure Activity Relationship of Tetrahydroisoquinoline-Based Potentiators of GluN2C and GluN2D Containing N-Methyl-d-aspartate Receptors. J Med Chem 57(11):4975. doi:10.1021/jm500710w

    Article  CAS  PubMed  Google Scholar 

  392. Perszyk RE, DiRaddo JO, Strong KL, Low CM, Ogden KK, Khatri A, Vargish GA, Pelkey KA, Tricoire L, Liotta DC, Smith Y, McBain CJ, Traynelis SF (2016) GluN2D-containing NMDA receptors mediate synaptic transmission in hippocampal interneurons and regulate interneuron activity. Mol Pharmacol 90:689. doi:10.1124/mol.116.105130

    Article  CAS  PubMed  Google Scholar 

  393. Ogden KK, Khatri A, Traynelis SF, Heldt SA (2014) Potentiation of GluN2C/D NMDA receptor subtypes in the amygdala facilitates the retention of fear and extinction learning in mice. Neuropsychopharmacology 39(3):625–637. doi:10.1038/npp.2013.241

    Article  CAS  PubMed  Google Scholar 

  394. Suryavanshi PS, Ugale RR, Yilmazer-Hanke D, Stairs DJ, Dravid SM (2014) GluN2C/GluN2D subunit-selective NMDA receptor potentiator CIQ reverses MK-801-induced impairment in prepulse inhibition and working memory in Y-maze test in mice. Br J Pharmacol 171(3):799–809. doi:10.1111/bph.12518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Yamamoto H, Kamegaya E, Sawada W, Hasegawa R, Yamamoto T, Hagino Y, Takamatsu Y, Imai K, Koga H, Mishina M, Ikeda K (2013) Involvement of the N-methyl-D-aspartate receptor GluN2D subunit in phencyclidine-induced motor impairment, gene expression, and increased Fos immunoreactivity. Mol Brain 6:56. doi:10.1186/1756-6606-6-56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  396. Zhang X, Feng ZJ, Chergui K (2014) Allosteric modulation of GluN2C/GluN2D-containing NMDA receptors bidirectionally modulates dopamine release: implication for Parkinson’s disease. Br J Pharmacol 171(16):3938–3945. doi:10.1111/bph.12758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Zimmerman SS, Khatri A, Garnier-Amblard EC, Mullasseril P, Kurtkaya NL, Gyoneva S, Hansen KB, Traynelis SF, Liotta DC (2014) Design, synthesis, and structure-activity relationship of a novel series of GluN2C-selective potentiators. J Med Chem 57(6):2334–2356. doi:10.1021/jm401695d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Watanabe M, Inoue Y, Sakimura K, Mishina M (1993) Distinct spatio-temporal distributions of the NMDA receptor channel subunit mRNAs in the brain. Ann N Y Acad Sci 707:463–466

    Article  CAS  PubMed  Google Scholar 

  399. Wenzel A, Fritschy JM, Mohler H, Benke D (1997) NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J Neurochem 68(2):469–478

    Article  CAS  PubMed  Google Scholar 

  400. Karavanova I, Vasudevan K, Cheng J, Buonanno A (2007) Novel regional and developmental NMDA receptor expression patterns uncovered in NR2C subunit-beta-galactosidase knock-in mice. Mol Cell Neurosci 34(3):468–480. doi:10.1016/j.mcn.2006.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. Daggett LP, Johnson EC, Varney MA, Lin FF, Hess SD, Deal CR, Jachec C, Lu CC, Kerner JA, Landwehrmeyer GB, Standaert DG, Young AB, Harpold MM, Velicelebi G (1998) The human N-methyl-D-aspartate receptor 2C subunit: genomic analysis, distribution in human brain, and functional expression. J Neurochem 71(5):1953–1968

    Article  CAS  PubMed  Google Scholar 

  402. Wenzel A, Villa M, Mohler H, Benke D (1996) Developmental and regional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain. J Neurochem 66(3):1240–1248

    Article  CAS  PubMed  Google Scholar 

  403. Standaert DG, Bernhard Landwehrmeyer G, Kerner JA, Penney JB, Young AB (1996) Expression of NMDAR2D glutamate receptor subunit mRNA in neurochemically identified interneurons in the rat neostriatum, neocortex and hippocampus. Mol Brain Res 42(1):89–102. doi:10.1016/s0169-328x(96)00117-9

    Article  CAS  PubMed  Google Scholar 

  404. Binshtok AM, Fleidervish IA, Sprengel R, Gutnick MJ (2006) NMDA receptors in layer 4 spiny stellate cells of the mouse barrel cortex contain the NR2C subunit. J Neurosci 26(2):708–715. doi:10.1523/JNEUROSCI.4409-05.2006

    Article  CAS  PubMed  Google Scholar 

  405. Misra C, Brickley SG, Farrant M, Cull-Candy SG (2000) Identification of subunits contributing to synaptic and extrasynaptic NMDA receptors in Golgi cells of the rat cerebellum. J Physiol 524(Pt 1):147–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA (1995) Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 15(10):6498–6508

    CAS  PubMed  Google Scholar 

  407. Sucher NJ, Akbarian S, Chi CL, Leclerc CL, Awobuluyi M, Deitcher DL, Wu MK, Yuan JP, Jones EG, Lipton SA (1995) Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 15(10):6509–6520

    CAS  PubMed  Google Scholar 

  408. Wong HK, Liu XB, Matos MF, Chan SF, Perez-Otano I, Boysen M, Cui J, Nakanishi N, Trimmer JS, Jones EG, Lipton SA, Sucher NJ (2002) Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain. J Comp Neurol 450(4):303–317. doi:10.1002/cne.10314

    Article  CAS  PubMed  Google Scholar 

  409. Goebel DJ, Poosch MS (1999) NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A. Brain Res Mol Brain Res 69(2):164–170

    Article  CAS  PubMed  Google Scholar 

  410. Henson MA, Roberts AC, Salimi K, Vadlamudi S, Hamer RM, Gilmore JH, Jarskog LF, Philpot BD (2008) Developmental regulation of the NMDA receptor subunits, NR3A and NR1, in human prefrontal cortex. Cereb Cortex 18(11):2560–2573. doi:10.1093/cercor/bhn017

    Article  PubMed  PubMed Central  Google Scholar 

  411. Fukaya M, Hayashi Y, Watanabe M (2005) NR2 to NR3B subunit switchover of NMDA receptors in early postnatal motoneurons. Eur J Neurosci 21(5):1432–1436. doi:10.1111/j.1460-9568.2005.03957.x

    Article  PubMed  Google Scholar 

  412. Prithviraj R, Inglis FM (2008) Expression of the N-methyl-D-aspartate receptor subunit NR3B regulates dendrite morphogenesis in spinal motor neurons. Neuroscience 155(1):145–153. doi:10.1016/j.neuroscience.2008.03.089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Wee KS, Zhang Y, Khanna S, Low CM (2008) Immunolocalization of NMDA receptor subunit NR3B in selected structures in the rat forebrain, cerebellum, and lumbar spinal cord. J Comp Neurol 509(1):118–135. doi:10.1002/cne.21747

    Article  CAS  PubMed  Google Scholar 

  414. Wee KS, Tan FC, Cheong YP, Khanna S, Low CM (2016) Ontogenic profile and synaptic distribution of GluN3 proteins in the rat brain and hippocampal neurons. Neurochem Res 41(1-2):290–297. doi:10.1007/s11064-015-1794-8

    Article  CAS  PubMed  Google Scholar 

  415. Eriksson M, Nilsson A, Froelich-Fabre S, Akesson E, Dunker J, Seiger A, Folkesson R, Benedikz E, Sundstrom E (2002) Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A. Neurosci Lett 321(3):177–181

    Article  CAS  PubMed  Google Scholar 

  416. Mueller HT, Meador-Woodruff JH (2005) Distribution of the NMDA receptor NR3A subunit in the adult pig-tail macaque brain. J Chem Neuroanat 29(3):157–172. doi:10.1016/j.jchemneu.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  417. Bendel O, Meijer B, Hurd Y, von Euler G (2005) Cloning and expression of the human NMDA receptor subunit NR3B in the adult human hippocampus. Neurosci Lett 377(1):31–36. doi:10.1016/j.neulet.2004.11.064

    Article  CAS  PubMed  Google Scholar 

  418. Barth AL, Malenka RC (2001) NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses. Nat Neurosci 4(3):235–236. doi:10.1038/85070

    Article  CAS  PubMed  Google Scholar 

  419. Bellone C, Nicoll RA (2007) Rapid bidirectional switching of synaptic NMDA receptors. Neuron 55(5):779–785. doi:10.1016/j.neuron.2007.07.035

    Article  CAS  PubMed  Google Scholar 

  420. Flint AC, Maisch US, Weishaupt JH, Kriegstein AR, Monyer H (1997) NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci 17(7):2469–2476

    CAS  PubMed  Google Scholar 

  421. Crair MC, Malenka RC (1995) A critical period for long-term potentiation at thalamocortical synapses. Nature 375(6529):325–328. doi:10.1038/375325a0

    Article  CAS  PubMed  Google Scholar 

  422. Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ (1999) Genetic enhancement of learning and memory in mice. Nature 401(6748):63–69

    Article  CAS  PubMed  Google Scholar 

  423. Kirkwood A, Rioult MC, Bear MF (1996) Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381(6582):526–528. doi:10.1038/381526a0

    Article  CAS  PubMed  Google Scholar 

  424. Philpot BD, Sekhar AK, Shouval HZ, Bear MF (2001) Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29(1):157–169

    Article  CAS  PubMed  Google Scholar 

  425. Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55(7):1081–1094. doi:10.1016/j.neuropharm.2008.07.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Zhou Q, Sheng M (2013) NMDA receptors in nervous system diseases. Neuropharmacology 74:69–75. doi:10.1016/j.neuropharm.2013.03.030

    Article  CAS  PubMed  Google Scholar 

  427. Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338(6103):68–72. doi:10.1126/science.1222939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Niciu MJ, Henter ID, Luckenbaugh DA, Zarate CA Jr, Charney DS (2014) Glutamate receptor antagonists as fast-acting therapeutic alternatives for the treatment of depression: ketamine and other compounds. Annu Rev Pharmacol Toxicol 54:119–139. doi:10.1146/annurev-pharmtox-011613-135950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354

    Article  CAS  PubMed  Google Scholar 

  430. Cornwell BR, Salvadore G, Furey M, Marquardt CA, Brutsche NE, Grillon C, Zarate CA Jr (2012) Synaptic potentiation is critical for rapid antidepressant response to ketamine in treatment-resistant major depression. Biol Psychiatry 72(7):555–561. doi:10.1016/j.biopsych.2012.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864. doi:10.1001/archpsyc.63.8.856

    Article  CAS  PubMed  Google Scholar 

  432. Murrough JW, Soleimani L, DeWilde KE, Collins KA, Lapidus KA, Iacoviello BM, Lener M, Kautz M, Kim J, Stern JB, Price RB, Perez AM, Brallier JW, Rodriguez GJ, Goodman WK, Iosifescu DV, Charney DS (2015) Ketamine for rapid reduction of suicidal ideation: a randomized controlled trial. Psychol Med 45(16):3571–3580. doi:10.1017/S0033291715001506

    Article  CAS  PubMed  Google Scholar 

  433. Price RB, Nock MK, Charney DS, Mathew SJ (2009) Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry 66(5):522–526. doi:10.1016/j.biopsych.2009.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Zarate CA Jr, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, Selter J, Marquardt CA, Liberty V, Luckenbaugh DA (2012) Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 71(11):939–946. doi:10.1016/j.biopsych.2011.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. Rodriguez CI, Kegeles LS, Levinson A, Feng T, Marcus SM, Vermes D, Flood P, Simpson HB (2013) Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept. Neuropsychopharmacology 38(12):2475–2483. doi:10.1038/npp.2013.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Feder A, Parides MK, Murrough JW, Perez AM, Morgan JE, Saxena S, Kirkwood K, Aan Het Rot M, Lapidus KA, Wan LB, Iosifescu D, Charney DS (2014) Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psychiat 71(6):681–688. doi:10.1001/jamapsychiatry.2014.62

    Article  CAS  Google Scholar 

  437. aan het Rot M, Collins KA, Murrough JW, Perez AM, Reich DL, Charney DS, Mathew SJ (2010) Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry 67(2):139–145. doi:10.1016/j.biopsych.2009.08.038

    Article  CAS  Google Scholar 

  438. Diamond PR, Farmery AD, Atkinson S, Haldar J, Williams N, Cowen PJ, Geddes JR, McShane R (2014) Ketamine infusions for treatment resistant depression: a series of 28 patients treated weekly or twice weekly in an ECT clinic. J Psychopharmacol 28(6):536–544. doi:10.1177/0269881114527361

    Article  PubMed  CAS  Google Scholar 

  439. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, aan het Rot M, Collins KA, Mathew SJ, Charney DS, Iosifescu DV (2013) Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry 74(4):250–256. doi:10.1016/j.biopsych.2012.06.022

    Article  CAS  PubMed  Google Scholar 

  440. Singh JB, Fedgchin M, Daly EJ, De Boer P, Cooper K, Lim P, Pinter C, Murrough JW, Sanacora G, Shelton RC, Kurian B, Winokur A, Fava M, Manji H, Drevets WC, Van Nueten L (2016) A double-blind, randomized, placebo-controlled, dose-frequency study of intravenous ketamine in patients with treatment-resistant depression. Am J Psychiatry 173(8):816–826. doi:10.1176/appi.ajp.2016.16010037

    Article  PubMed  Google Scholar 

  441. Wan LB, Levitch CF, Perez AM, Brallier JW, Iosifescu DV, Chang LC, Foulkes A, Mathew SJ, Charney DS, Murrough JW (2015) Ketamine safety and tolerability in clinical trials for treatment-resistant depression. J Clin Psychiatry 76(3):247–252. doi:10.4088/JCP.13m08852

    Article  PubMed  Google Scholar 

  442. Lapidus KA, Levitch CF, Perez AM, Brallier JW, Parides MK, Soleimani L, Feder A, Iosifescu DV, Charney DS, Murrough JW (2014) A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol Psychiatry 76(12):970–976. doi:10.1016/j.biopsych.2014.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Loo CK, Galvez V, O’Keefe E, Mitchell PB, Hadzi-Pavlovic D, Leyden J, Harper S, Somogyi AA, Lai R, Weickert CS, Glue P (2016) Placebo-controlled pilot trial testing dose titration and intravenous, intramuscular and subcutaneous routes for ketamine in depression. Acta Psychiatr Scand 134(1):48–56. doi:10.1111/acps.12572

    Article  CAS  PubMed  Google Scholar 

  444. Sanacora G, Smith MA, Pathak S, Su HL, Boeijinga PH, McCarthy DJ, Quirk MC (2014) Lanicemine: a low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects. Mol Psychiatry 19(9):978–985. doi:10.1038/mp.2013.130

    Article  CAS  PubMed  Google Scholar 

  445. Zarate CA Jr, Mathews D, Ibrahim L, Chaves JF, Marquardt C, Ukoh I, Jolkovsky L, Brutsche NE, Smith MA, Luckenbaugh DA (2013) A randomized trial of a low-trapping nonselective N-methyl-D-aspartate channel blocker in major depression. Biol Psychiatry 74(4):257–264. doi:10.1016/j.biopsych.2012.10.019

    Article  CAS  PubMed  Google Scholar 

  446. Ibrahim L, Diaz Granados N, Jolkovsky L, Brutsche N, Luckenbaugh DA, Herring WJ, Potter WZ, Zarate CA Jr (2012) A Randomized, placebo-controlled, crossover pilot trial of the oral selective NR2B antagonist MK-0657 in patients with treatment-resistant major depressive disorder. J Clin Psychopharmacol 32(4):551–557. doi:10.1097/JCP.0b013e31825d70d6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  447. Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW (2008) An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 28(6):631–637. doi:10.1097/JCP.0b013e31818a6cea

    Article  CAS  PubMed  Google Scholar 

  448. Abdallah CG, Sanacora G, Duman RS, Krystal JH (2015) Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu Rev Med 66:509–523. doi:10.1146/annurev-med-053013-062946

    Article  CAS  PubMed  Google Scholar 

  449. Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19(4):126–130

    Article  CAS  PubMed  Google Scholar 

  450. Cooper LN, Bear MF (2012) The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat Rev Neurosci 13(11):798–810. doi:10.1038/nrn3353

    Article  CAS  PubMed  Google Scholar 

  451. Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135(3):422–435. doi:10.1016/j.cell.2008.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  452. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533(7604):481–486. doi:10.1038/nature17998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  453. Duman RS, Li N, Liu RJ, Duric V, Aghajanian G (2012) Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62(1):35–41. doi:10.1016/j.neuropharm.2011.08.044

    Article  CAS  PubMed  Google Scholar 

  454. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964. doi:10.1126/science.1190287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  455. Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G, Duman RS (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69(8):754–761. doi:10.1016/j.biopsych.2010.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  456. Graef JD, Newberry K, Newton A, Pieschl R, Shields E, Luan FN, Simmermacher J, Luchetti D, Schaeffer E, Li YW, Kiss L, Bristow LJ (2015) Effect of acute NR2B antagonist treatment on long-term potentiation in the rat hippocampus. Brain Res 1609:31–39. doi:10.1016/j.brainres.2015.03.019

    Article  CAS  PubMed  Google Scholar 

  457. Nagy D, Stoiljkovic M, Menniti FS, Hajos M (2016) Differential effects of an NR2B NAM and ketamine on synaptic potentiation and gamma synchrony: relevance to rapid-onset antidepressant efficacy. Neuropsychopharmacology 41(6):1486–1494. doi:10.1038/npp.2015.298

    Article  CAS  PubMed  Google Scholar 

  458. Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27(43):11496–11500. doi:10.1523/JNEUROSCI.2213-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  459. Kocsis B (2012) Differential role of NR2A and NR2B subunits in N-methyl-D-aspartate receptor antagonist-induced aberrant cortical gamma oscillations. Biol Psychiatry 71(11):987–995. doi:10.1016/j.biopsych.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  460. Sivarao DV, Chen P, Yang Y, Li YW, Pieschl R, Ahlijanian MK (2014) NR2B Antagonist CP-101,606 Abolishes Pitch-Mediated Deviance Detection in Awake Rats. Front Psych 5:96. doi:10.3389/fpsyt.2014.00096

    Google Scholar 

  461. Keavy D, Bristow LJ, Sivarao DV, Batchelder M, King D, Thangathirupathy S, Macor JE, Weed MR (2016) The qEEG Signature of Selective NMDA NR2B Negative Allosteric Modulators; A Potential Translational Biomarker for Drug Development. PLoS One 11(4):e0152729. doi:10.1371/journal.pone.0152729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  462. Matta JA, Pelkey KA, Craig MT, Chittajallu R, Jeffries BW, McBain CJ (2013) Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity. Nat Neurosci 16(8):1032–1041. doi:10.1038/nn.3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  463. Pfeffer CK, Xue MS, He M, Huang ZJ, Scanziani M (2013) Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16(8):1068–U1130. doi:10.1038/nn.3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  464. Harris KD, Shepherd GM (2015) The neocortical circuit: themes and variations. Nat Neurosci 18(2):170–181. doi:10.1038/nn.3917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  465. Wang M, Yang Y, Wang CJ, Gamo NJ, Jin LE, Mazer JA, Morrison JH, Wang XJ, Arnsten AF (2013) NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron 77(4):736–749. doi:10.1016/j.neuron.2012.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  466. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696. doi:10.1038/nrn2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  467. Lee MC, Yasuda R, Ehlers MD (2010) Metaplasticity at single glutamatergic synapses. Neuron 66(6):859–870. doi:10.1016/j.neuron.2010.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  468. Chen WS, Bear MF (2007) Activity-dependent regulation of NR2B translation contributes to metaplasticity in mouse visual cortex. Neuropharmacology 52(1):200–214. doi:10.1016/j.neuropharm.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  469. Stocca G, Vicini S (1998) Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons. J Physiol 507(Pt 1):13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  470. Chiocchetti AG, Bour HS, Freitag CM (2014) Glutamatergic candidate genes in autism spectrum disorder: an overview. J Neural Transm (Vienna) 121(9):1081–1106. doi:10.1007/s00702-014-1161-y

    Article  CAS  Google Scholar 

  471. Greenwood TA, Lazzeroni LC, Murray SS, Cadenhead KS, Calkins ME, Dobie DJ, Green MF, Gur RE, Gur RC, Hardiman G, Kelsoe JR, Leonard S, Light GA, Nuechterlein KH, Olincy A, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Freedman R, Braff DL (2011) Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry 168(9):930–946. doi:10.1176/appi.ajp.2011.10050723

    Article  PubMed  PubMed Central  Google Scholar 

  472. Hall J, Trent S, Thomas KL, O’Donovan MC, Owen MJ (2015) Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol Psychiatry 77(1):52–58. doi:10.1016/j.biopsych.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  473. Menniti FS, Lindsley CW, Conn PJ, Pandit J, Zagouras P, Volkmann RA (2013) Allosteric modulators for the treatment of schizophrenia: targeting glutamatergic networks. Curr Top Med Chem 13(1):26–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  474. Domino EF, Luby ED (2012) Phencyclidine/schizophrenia: one view toward the past, the other to the future. Schizophr Bull 38(5):914–919. doi:10.1093/schbul/sbs011

    Article  PubMed  PubMed Central  Google Scholar 

  475. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51(3):199–214

    Article  CAS  PubMed  Google Scholar 

  476. Xu K, Krystal JH, Ning Y, Chen da C, He H, Wang D, Ke X, Zhang X, Ding Y, Liu Y, Gueorguieva R, Wang Z, Limoncelli D, Pietrzak RH, Petrakis IL, Zhang X, Fan N (2015) Preliminary analysis of positive and negative syndrome scale in ketamine-associated psychosis in comparison with schizophrenia. J Psychiatr Res 61:64–72. doi:10.1016/j.jpsychires.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  477. Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 81(3):363–369

    Article  CAS  PubMed  Google Scholar 

  478. Shaffer CL, Osgood SM, Smith DL, Liu J, Trapa PE (2014) Enhancing ketamine translational pharmacology via receptor occupancy normalization. Neuropharmacology 86:174–180. doi:10.1016/j.neuropharm.2014.07.008

    Article  CAS  PubMed  Google Scholar 

  479. Javitt DC, Zukin SR (1990) The role of excitatory amino acids in neuropsychiatric illness. J Neuropsychiatry Clin Neurosci 2(1):44–52. doi:10.1176/jnp.2.1.44

    Article  CAS  PubMed  Google Scholar 

  480. Javitt DC, Zukin SR, Heresco-Levy U, Umbricht D (2012) Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr Bull 38(5):958–966. doi:10.1093/schbul/sbs069

    Article  PubMed  PubMed Central  Google Scholar 

  481. Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl) 169(3-4):215–233. doi:10.1007/s00213-003-1582-z

    Article  CAS  Google Scholar 

  482. Kantrowitz ER, Javitt D (2011) Glutamate: new hope for schizophrenia therapy. Curr Psychiatry 10(4):69–74

    Google Scholar 

  483. Tsai GE, Lin PY (2010) Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des 16(5):522–537

    Article  CAS  PubMed  Google Scholar 

  484. Buchanan RW, Javitt DC, Marder SR, Schooler NR, Gold JM, McMahon RP, Heresco-Levy U, Carpenter WT (2007) The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am J Psychiatry 164(10):1593–1602. doi:10.1176/appi.ajp.2007.06081358

    Article  PubMed  Google Scholar 

  485. Goff DC (2012) D-cycloserine: an evolving role in learning and neuroplasticity in schizophrenia. Schizophr Bull 38(5):936–941. doi:10.1093/schbul/sbs012

    Article  PubMed  PubMed Central  Google Scholar 

  486. Goff DC (2017) D-cycloserine in schizophrenia: new strategies for improving clinical outcomes by enhancing plasticity. Curr Neuropharmacol 15(1):21–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  487. Umbricht D, Alberati D, Martin-Facklam M, Borroni E, Youssef EA, Ostland M, Wallace TL, Knoflach F, Dorflinger E, Wettstein JG, Bausch A, Garibaldi G, Santarelli L (2014) Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia: a randomized, double-blind, proof-of-concept study. JAMA Psychiat 71(6):637–646. doi:10.1001/jamapsychiatry.2014.163

    Article  CAS  Google Scholar 

  488. Goff DC, Cather C, Gottlieb JD, Evins AE, Walsh J, Raeke L, Otto MW, Schoenfeld D, Green MF (2008) Once-weekly D-cycloserine effects on negative symptoms and cognition in schizophrenia: an exploratory study. Schizophr Res 106(2-3):320–327. doi:10.1016/j.schres.2008.08.012

    Article  PubMed  PubMed Central  Google Scholar 

  489. Gottlieb JD, Cather C, Shanahan M, Creedon T, Macklin EA, Goff DC (2011) D-cycloserine facilitation of cognitive behavioral therapy for delusions in schizophrenia. Schizophr Res 131(1-3):69–74. doi:10.1016/j.schres.2011.05.029

    Article  PubMed  PubMed Central  Google Scholar 

  490. Martina M, Gorfinkel Y, Halman S, Lowe JA, Periyalwar P, Schmidt CJ, Bergeron R (2004) Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J Physiol 557(Pt 2):489–500. doi:10.1113/jphysiol.2004.063321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  491. Sheinin A, Shavit S, Benveniste M (2001) Subunit specificity and mechanism of action of NMDA partial agonist D-cycloserine. Neuropharmacology 41(2):151–158

    Article  CAS  PubMed  Google Scholar 

  492. Dravid SM, Burger PB, Prakash A, Geballe MT, Yadav R, Le P, Vellano K, Snyder JP, Traynelis SF (2010) Structural determinants of D-cycloserine efficacy at the NR1/NR2C NMDA receptors. J Neurosci 30(7):2741–2754. doi:10.1523/JNEUROSCI.5390-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  493. Standaert DG, Testa CM, Young AB, Penney JB Jr (1994) Organization of N-methyl-D-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J Comp Neurol 343(1):1–16. doi:10.1002/cne.903430102

    Article  CAS  PubMed  Google Scholar 

  494. Zhang Y, Buonanno A, Vertes RP, Hoover WB, Lisman JE (2012) NR2C in the thalamic reticular nucleus; effects of the NR2C knockout. PLoS One 7(7):e41908. doi:10.1371/journal.pone.0041908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  495. Merchant RE, Bullock MR, Carmack CA, Shah AK, Wilner KD, Ko G, Williams SA (1999) A double-blind, placebo-controlled study of the safety, tolerability and pharmacokinetics of CP-101,606 in patients with a mild or moderate traumatic brain injury. Ann N Y Acad Sci 890:42–50

    Article  CAS  PubMed  Google Scholar 

  496. Nutt JG, Gunzler SA, Kirchhoff T, Hogarth P, Weaver JL, Krams M, Jamerson B, Menniti FS, Landen JW (2008) Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord 23(13):1860–1866. doi:10.1002/mds.22169

    Article  PubMed  PubMed Central  Google Scholar 

  497. Chaperon F, Muller W, Auberson YP, Tricklebank MD, Neijt HC (2003) Substitution for PCP, disruption of prepulse inhibition and hyperactivity induced by N-methyl-D-aspartate receptor antagonists: preferential involvement of the NR2B rather than NR2A subunit. Behav Pharmacol 14(5-6):477–487. doi:10.1097/01.fbp.0000091471.79060.ed

    CAS  PubMed  Google Scholar 

  498. Nicholson KL, Mansbach RS, Menniti FS, Balster RL (2007) The phencyclidine-like discriminative stimulus effects and reinforcing properties of the NR2B-selective N-methyl-D-aspartate antagonist CP-101 606 in rats and rhesus monkeys. Behav Pharmacol 18(8):731–743. doi:10.1097/FBP.0b013e3282f14ed6

    Article  CAS  PubMed  Google Scholar 

  499. Epi PMC (2015) A roadmap for precision medicine in the epilepsies. Lancet Neurol 14(12):1219–1228. doi:10.1016/S1474-4422(15)00199-4

    Article  Google Scholar 

  500. Carvill GL, Regan BM, Yendle SC, O’Roak BJ, Lozovaya N, Bruneau N, Burnashev N, Khan A, Cook J, Geraghty E, Sadleir LG, Turner SJ, Tsai MH, Webster R, Ouvrier R, Damiano JA, Berkovic SF, Shendure J, Hildebrand MS, Szepetowski P, Scheffer IE, Mefford HC (2013) GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet 45(9):1073–1076. doi:10.1038/ng.2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  501. Endele S, Rosenberger G, Geider K, Popp B, Tamer C, Stefanova I, Milh M, Kortum F, Fritsch A, Pientka FK, Hellenbroich Y, Kalscheuer VM, Kohlhase J, Moog U, Rappold G, Rauch A, Ropers HH, von Spiczak S, Tonnies H, Villeneuve N, Villard L, Zabel B, Zenker M, Laube B, Reis A, Wieczorek D, Van Maldergem L, Kutsche K (2010) Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 42(11):1021–1026. doi:10.1038/ng.677

    Article  CAS  PubMed  Google Scholar 

  502. Lemke JR, Lal D, Reinthaler EM, Steiner I, Nothnagel M, Alber M, Geider K, Laube B, Schwake M, Finsterwalder K, Franke A, Schilhabel M, Jahn JA, Muhle H, Boor R, Van Paesschen W, Caraballo R, Fejerman N, Weckhuysen S, De Jonghe P, Larsen J, Moller RS, Hjalgrim H, Addis L, Tang S, Hughes E, Pal DK, Veri K, Vaher U, Talvik T, Dimova P, Guerrero Lopez R, Serratosa JM, Linnankivi T, Lehesjoki AE, Ruf S, Wolff M, Buerki S, Wohlrab G, Kroell J, Datta AN, Fiedler B, Kurlemann G, Kluger G, Hahn A, Haberlandt DE, Kutzer C, Sperner J, Becker F, Weber YG, Feucht M, Steinbock H, Neophythou B, Ronen GM, Gruber-Sedlmayr U, Geldner J, Harvey RJ, Hoffmann P, Herms S, Altmuller J, Toliat MR, Thiele H, Nurnberg P, Wilhelm C, Stephani U, Helbig I, Lerche H, Zimprich F, Neubauer BA, Biskup S, von Spiczak S (2013) Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 45(9):1067–1072. doi:10.1038/ng.2728

    Article  CAS  PubMed  Google Scholar 

  503. Lesca G, Rudolf G, Bruneau N, Lozovaya N, Labalme A, Boutry-Kryza N, Salmi M, Tsintsadze T, Addis L, Motte J, Wright S, Tsintsadze V, Michel A, Doummar D, Lascelles K, Strug L, Waters P, de Bellescize J, Vrielynck P, de Saint MA, Ville D, Ryvlin P, Arzimanoglou A, Hirsch E, Vincent A, Pal D, Burnashev N, Sanlaville D, Szepetowski P (2013) GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet 45(9):1061–1066. doi:10.1038/ng.2726

    Article  CAS  PubMed  Google Scholar 

  504. Strehlow V, Heyne HO, Lemke JR (2015) The spectrum of GRIN2A-associated disorders. Epileptologie 32(3):147–151

    Google Scholar 

  505. Insel TR (2010) Rethinking schizophrenia. Nature 468(7321):187–193. doi:10.1038/nature09552

    Article  CAS  PubMed  Google Scholar 

  506. Yuan H, Low CM, Moody OA, Jenkins A, Traynelis SF (2015) Ionotropic GABA and glutamate receptor mutations and human neurologic diseases. Mol Pharmacol 88(1):203–217. doi:10.1124/mol.115.097998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  507. Burnashev N, Szepetowski P (2015) NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol 20:73–82. doi:10.1016/j.coph.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  508. Pierson TM, Yuan H, Marsh ED, Fuentes-Fajardo K, Adams DR, Markello T, Golas G, Simeonov DR, Holloman C, Tankovic A, Karamchandani MM, Schreiber JM, Mullikin JC, Ph DNCSP, Tifft CJ, Toro C, Boerkoel CF, Traynelis SF, Gahl WA (2014) GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol 1(3):190–198. doi:10.1002/acn3.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  509. Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56(3):422–437. doi:10.1016/j.neuron.2007.10.001

    Article  CAS  PubMed  Google Scholar 

  510. Robinson L, Guy J, McKay L, Brockett E, Spike RC, Selfridge J, De Sousa D, Merusi C, Riedel G, Bird A, Cobb SR (2012) Morphological and functional reversal of phenotypes in a mouse model of Rett syndrome. Brain 135(Pt 9):2699–2710. doi:10.1093/brain/aws096

    Article  PubMed  PubMed Central  Google Scholar 

  511. Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315(5815):1143–1147. doi:10.1126/science.1138389

    Article  CAS  PubMed  Google Scholar 

  512. Katz DM, Bird A, Coenraads M, Gray SJ, Menon DU, Philpot BD, Tarquinio DC (2016) Rett syndrome: crossing the threshold to clinical translation. Trends Neurosci 39(2):100–113. doi:10.1016/j.tins.2015.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  513. Blue ME, Kaufmann WE, Bressler J, Eyring C, O’Driscoll C, Naidu S, Johnston MV (2011) Temporal and regional alterations in NMDA receptor expression in Mecp2-null mice. Anat Rec (Hoboken) 294(10):1624–1634. doi:10.1002/ar.21380

    Article  CAS  Google Scholar 

  514. Durand S, Patrizi A, Quast KB, Hachigian L, Pavlyuk R, Saxena A, Carninci P, Hensch TK, Fagiolini M (2012) NMDA receptor regulation prevents regression of visual cortical function in the absence of Mecp2. Neuron 76(6):1078–1090. doi:10.1016/j.neuron.2012.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  515. Mierau SB, Patrizi A, Hensch TK, Fagiolini M (2016) Cell-specific regulation of N-methyl-D-aspartate receptor maturation by Mecp2 in cortical circuits. Biol Psychiatry 79(9):746–754. doi:10.1016/j.biopsych.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  516. Kron M, Howell CJ, Adams IT, Ransbottom M, Christian D, Ogier M, Katz DM (2012) Brain activity mapping in Mecp2 mutant mice reveals functional deficits in forebrain circuits, including key nodes in the default mode network, that are reversed with ketamine treatment. J Neurosci 32(40):13860–13872. doi:10.1523/JNEUROSCI.2159-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  517. Patrizi A, Picard N, Simon AJ, Gunner G, Centofante E, Andrews NA, Fagiolini M (2016) Chronic administration of the N-methyl-D-aspartate receptor antagonist ketamine improves Rett syndrome phenotype. Biol Psychiatry 79(9):755–764. doi:10.1016/j.biopsych.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  518. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48

    CAS  PubMed  Google Scholar 

  519. Jones KA, Menniti FS, Sivarao DV (2015) Translational psychiatry--light at the end of the tunnel. Ann N Y Acad Sci 1344:1–11. doi:10.1111/nyas.12725

    Article  CAS  PubMed  Google Scholar 

  520. Monaghan DT, Irvine MW, Costa BM, Fang G, Jane DE (2012) Pharmacological modulation of NMDA receptor activity and the advent of negative and positive allosteric modulators. Neurochem Int 61(4):581–592. doi:10.1016/j.neuint.2012.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  521. Kohr G (2006) NMDA receptor function: subunit composition versus spatial distribution. Cell Tissue Res 326(2):439–446. doi:10.1007/s00441-006-0273-6

    Article  PubMed  CAS  Google Scholar 

  522. Kohr G (2007) NMDA receptor antagonists: tools in neuroscience with promise for treating CNS pathologies. J Physiol 581(Pt 1):1–2. doi:10.1113/jphysiol.2007.130732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  523. Yuan H, Geballe MT, Hansen KB, Traynelis SF (2008) Structure and function relationship of the NMDA receptor. In: Hell JW, Ehlers MD (eds) Structural and functional organization of the synapse, 1st edn. Springer, New York, NY, pp 289–316

    Chapter  Google Scholar 

  524. Hess SD, Daggett LP, Crona J, Deal C, Lu CC, Urrutia A, Chavez-Noriega L, Ellis SB, Johnson EC, Velicelebi G (1996) Cloning and functional characterization of human heteromeric N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 278(2):808–816

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Institutes of Health to S.F.T. (NS036654 and NS065371) and K.B.H. (GM103546 and NS097536).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasper B. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hansen, K.B., Yi, F., Perszyk, R.E., Menniti, F.S., Traynelis, S.F. (2017). NMDA Receptors in the Central Nervous System. In: Burnashev, N., Szepetowski, P. (eds) NMDA Receptors. Methods in Molecular Biology, vol 1677. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7321-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7321-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7320-0

  • Online ISBN: 978-1-4939-7321-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics