Skip to main content

Mapping of Histone Modifications in Plants by Tandem Mass Spectrometry

  • Protocol
  • First Online:
Plant Chromatin Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1675))

Abstract

To get an insight into the mechanisms of gene expression regulation in eukaryotic organisms, it is necessary to decipher the connection between the different chemical modifications occurring on the chromatin, at both the DNA and the associated histone proteins. Histones are basic proteins, which pack the DNA into nucleosomes, and are hot spots for several posttranslational modifications. Elucidating combinatorial histone modifications co-occurring on the same histone protein will greatly contribute to our understanding of the mechanisms involved in the development of eukaryotes. The advancements in mass spectrometry technologies, including sensitivity, accuracy, and ionization strategies, have significantly contributed to the identification of novel single and combinatorial modifications on histones isolated from model organisms. In this chapter, we describe detailed protocols applied for the extraction, purification, and processing of histones for subsequent analysis by tandem mass spectrometry, using Brassica oleracea (cauliflower), a close relative of Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184 (4139):868-871

    Google Scholar 

  2. Huang H, Sabari BR, Garcia BA, Allis CD, Zhao Y (2014) SnapShot: histone modifications. Cell 159(2):458–458.e451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14(11):1025–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Article  CAS  PubMed  Google Scholar 

  5. Roudier F, Teixeira FK, Colot V (2009) Chromatin indexing in Arabidopsis: an epigenomic tale of tails and more. Trends Genet 25(11):511–517

    Article  CAS  PubMed  Google Scholar 

  6. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bowman GD, Poirier MG (2015) Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 115(6):2274–2295

    Article  CAS  PubMed  Google Scholar 

  8. Arnaudo AM, Garcia BA (2013) Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin 6(1):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bowler C, Benvenuto G, Laflamme P, Molino D, Probst AV, Tariq M, Paszkowski J (2004) Chromatin techniques for plant cells. Plant J 39(5):776–789

    Article  CAS  PubMed  Google Scholar 

  10. Garcia BA, Hake SB, Diaz RL, Kauer M, Morris SA, Recht J, Shabanowitz J, Mishra N, Strahl BD, Allis CD, Hunt DF (2007) Organismal differences in post-translational modifications in histones H3 and H4. J Biol Chem 282(10):7641–7655

    Article  CAS  PubMed  Google Scholar 

  11. Garcia BA, Shabanowitz J, Hunt DF (2007) Characterization of histones and their post-translational modifications by mass spectrometry. Curr Opin Chem Biol 11(1):66–73

    Article  CAS  PubMed  Google Scholar 

  12. Zhang K, Sridhar VV, Zhu J, Kapoor A, Zhu JK (2007) Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS One 2(11):e1210

    Article  PubMed  PubMed Central  Google Scholar 

  13. Johnson L, Mollah S, Garcia BA, Muratore TL, Shabanowitz J, Hunt DF, Jacobsen SE (2004) Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. Nucleic Acids Res 32(22):6511–6518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tweedie-Cullen RY, Reck JM, Mansuy IM (2009) Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J Proteome Res 8(11):4966–4982

    Article  CAS  PubMed  Google Scholar 

  15. Udeshi ND, Compton PD, Shabanowitz J, Hunt DF, Rose KL (2008) Methods for analyzing peptides and proteins on a chromatographic timescale by electron-transfer dissociation mass spectrometry. Nat Protoc 3(11):1709–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahrez W, Arellano MS, Moreno-Romero J, Nakamura M, Shu H, Nanni P, Kohler C, Gruissem W, Hennig L (2016) H3K36ac is an evolutionary conserved plant histone modification that marks active genes. Plant Physiol 170(3):1566–1577

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Hennig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mahrez, W., Hennig, L. (2018). Mapping of Histone Modifications in Plants by Tandem Mass Spectrometry. In: Bemer, M., Baroux, C. (eds) Plant Chromatin Dynamics. Methods in Molecular Biology, vol 1675. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7318-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7318-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7317-0

  • Online ISBN: 978-1-4939-7318-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics