Skip to main content

Technical Review: Microscopy and Image Processing Tools to Analyze Plant Chromatin: Practical Considerations

  • Protocol
  • First Online:
Plant Chromatin Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1675))

Abstract

In situ nucleus and chromatin analyses rely on microscopy imaging that benefits from versatile, efficient fluorescent probes and proteins for static or live imaging. Yet the broad choice in imaging instruments offered to the user poses orientation problems. Which imaging instrument should be used for which purpose? What are the main caveats and what are the considerations to best exploit each instrument’s ability to obtain informative and high-quality images? How to infer quantitative information on chromatin or nuclear organization from microscopy images? In this review, we present an overview of common, fluorescence-based microscopy systems and discuss recently developed super-resolution microscopy systems, which are able to bridge the resolution gap between common fluorescence microscopy and electron microscopy. We briefly present their basic principles and discuss their possible applications in the field, while providing experience-based recommendations to guide the user toward best-possible imaging. In addition to raw data acquisition methods, we discuss commercial and noncommercial processing tools required for optimal image presentation and signal evaluation in two and three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Olins DE, Olins AL (2003) Chromatin history: a view from the bridge. Nat Rev Mol Cell Biol 4:809–814

    Article  CAS  PubMed  Google Scholar 

  2. Hergeth SP, Schneider R (2015) The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep 16(11):1439–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schneider R, Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21(23):3027–3043

    Article  CAS  PubMed  Google Scholar 

  4. van Driel R, Fransz P (2004) Nuclear architecture and genome functioning in plants and animals: what can we learn from both? Exp Cell Res 296(1):86–90

    Article  PubMed  CAS  Google Scholar 

  5. Deal RB, Henikoff S (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6(1):56–68

    Article  CAS  PubMed  Google Scholar 

  6. Moreno-Romero J, Santos-Gonzalez J, Hennig L, Kohler C (2017) Applying the INTACT method to purify endosperm nuclei and to generate parental-specific epigenome profiles. Nat Protoc 12(2):238–254

    Article  CAS  PubMed  Google Scholar 

  7. Kawakatsu T, Stuart T, Valdes M, Breakfield N, Schmitz RJ, Nery JR, Urich MA, Han X, Lister R, Benfey PN, Ecker JR (2016) Unique cell-type-specific patterns of DNA methylation in the root meristem. Nat Plants 2(5):16058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morao AK, Caillieux E, Colot V, Roudier F (2017) Cell type-specific profiling of chromatin modifications and associated proteins. In: Plant chromatin dynamics, Methods in Molecular Biology. Springer, New York, NY

    Google Scholar 

  9. Gonzalez-Sandoval A, Gasser SM (2016) On TADs and LADs: spatial control over gene expression. Trends Genet 32(8):485–495

    Article  CAS  PubMed  Google Scholar 

  10. North AJ (2006) Seeing is believing? A beginners’ guide to practical pitfalls in image acquisition. J Cell Biol 172(1):9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lambert TJ, Waters JC (2017) Navigating challenges in the application of superresolution microscopy. J Cell Biol 216(1):53–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shaw SL (2006) Imaging the live plant cell. Plant J 45(4):573–598

    Article  CAS  PubMed  Google Scholar 

  13. Shaw SL, Ehrhardt DW (2013) Smaller, faster, brighter: advances in optical imaging of living plant cells. Annu Rev Plant Biol 64:351–375

    Article  CAS  PubMed  Google Scholar 

  14. Probst A (2017) A compendium of methods to analyse the spatial organization of plant chromatin. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols, Methods in molecular biology. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_23

    Google Scholar 

  15. Mao YS, Zhang B, Spector DL (2011) Biogenesis and function of nuclear bodies. Trends Genet 27(8):295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meier I (2009) Functional organization of the plant nucleus. In: Meier I (ed) Functional organization of the plant nucleus. Springer, Berlin, pp 1–8. doi:10.1007/978-3-540-71058-5_1

    Chapter  Google Scholar 

  17. Cheng P-C (2010) Interaction of light with botanical specimens. In: Pawley JB (ed) Handbook for biological confocal microscopy, 3rd edn. Springer, New York, NY, pp 414–441

    Google Scholar 

  18. Ohad N, Yalovsky S (2010) Utilizing bimolecular fluorescence complementation (BiFC) to assay protein-protein interaction in plants. Methods Mol Biol 655:347–358

    Article  CAS  PubMed  Google Scholar 

  19. Horstman A, Tonaco IA, Boutilier K, Immink RG (2014) A cautionary note on the use of split-YFP/BiFC in plant protein-protein interaction studies. Int J Mol Sci 15(6):9628–9643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bu Z, Yu Y, Li Z, Liu Y, Jiang W, Huang Y, Dong AW (2014) Regulation of arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression. PLoS Genet 10(9):e1004617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Song ZT, Sun L, Lu SJ, Tian Y, Ding Y, Liu JX (2015) Transcription factor interaction with COMPASS-like complex regulates histone H3K4 trimethylation for specific gene expression in plants. Proc Natl Acad Sci U S A 112(9):2900–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Perrella G, Carr C, Asensi-Fabado MA, Donald NA, Paldi K, Hannah MA, Amtmann A (2016) The histone deacetylase complex 1 protein of arabidopsis has the capacity to interact with multiple proteins including histone 3-binding proteins and histone 1 variants. Plant Physiol 171(1):62–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gadella TW Jr, van der Krogt GN, Bisseling T (1999) GFP-based FRET microscopy in living plant cells. Trends Plant Sci 4(7):287–291

    Article  PubMed  Google Scholar 

  24. Benvenuto G, Formiggini F, Laflamme P, Malakhov M, Bowler C (2002) The photomorphogenesis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosome context. Curr Biol 12(17):1529–1534

    Article  CAS  PubMed  Google Scholar 

  25. Hasegawa J, Sakamoto Y, Nakagami S, Aida M, Sawa S, Matsunaga S (2016) Three-dimensional imaging of plant organs using a simple and rapid transparency technique. Plant Cell Physiol 57(3):462–472

    Article  CAS  PubMed  Google Scholar 

  26. Kurihara D, Mizuta Y, Sato Y, Higashiyama T (2015) ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142(23):4168–4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Warner CA, Biedrzycki ML, Jacobs SS, Wisser RJ, Caplan JL, Sherrier DJ (2014) An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiol 166(4):1684–1687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Musielak TJ, Schenkel L, Kolb M, Henschen A, Bayer M (2015) A simple and versatile cell wall staining protocol to study plant reproduction. Plant Reprod 28(3-4):161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Musielak TJ, Slane D, Liebig C, Bayer M (2016) A versatile optical clearing protocol for deep tissue imaging of fluorescent proteins in Arabidopsis thaliana. PLoS One 11(8):e0161107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Littlejohn GR, Gouveia JD, Edner C, Smirnoff N, Love J (2010) Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll. New Phytol 186(4):1018–1025

    Article  CAS  PubMed  Google Scholar 

  31. Littlejohn GR, Mansfield JC, Christmas JT, Witterick E, Fricker MD, Grant MR, Smirnoff N, Everson RM, Moger J, Love J (2014) An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology. Front Plant Sci 5:140

    PubMed  PubMed Central  Google Scholar 

  32. Nagaki K, Yamaji N, Murata M (2017) ePro-ClearSee: a simple immunohistochemical method that does not require sectioning of plant samples. Sci Rep 7:42203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. She W, Grimanelli D, Baroux C (2014) An efficient method for quantitative, single-cell analysis of chromatin modification and nuclear organization in whole-mount ovules in Arabidopsis. J Vis Exp (88):e51530

    Google Scholar 

  34. Escobar-Guzman R, Rodriguez-Leal D, Vielle-Calzada JP, Ronceret A (2015) Whole-mount immunolocalization to study female meiosis in Arabidopsis. Nat Protoc 10(10):1535–1542

    Article  CAS  PubMed  Google Scholar 

  35. Pillot M, Baroux C, Vazquez MA, Autran D, Leblanc O, Vielle-Calzada JP, Grossniklaus U, Grimanelli D (2010) Embryo and endosperm inherit distinct chromatin and transcriptional states from the female gametes in Arabidopsis. Plant Cell 22(2):307–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. She W, Grimanelli D, Rutowicz K, Whitehead MW, Puzio M, Kotlinski M, Jerzmanowski A, Baroux C (2013) Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140(19):4008–4019

    Article  CAS  PubMed  Google Scholar 

  37. Costa S, Shaw P (2006) Chromatin organization and cell fate switch respond to positional information in Arabidopsis. Nature 439(7075):493–496

    Article  CAS  PubMed  Google Scholar 

  38. Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Bruss C, Kumlehn J, Matzk F, Houben A (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17(9):2431–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wegel E, Vallejos RH, Christou P, Stoger E, Shaw P (2005) Large-scale chromatin decondensation induced in a developmentally activated transgene locus. J Cell Sci 118(Pt 5):1021–1031

    Article  CAS  PubMed  Google Scholar 

  40. Braszewska-Zalewska AJ, Wolny EA, Smialek L, Hasterok R (2013) Tissue-specific epigenetic modifications in root apical meristem cells of Hordeum vulgare. PLoS One 8(7):e69204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wolny E, Braszewska-Zalewska A, Kroczek D, Hasterok R (2015) In situ analysis of epigenetic modifications in the chromatin of Brachypodium distachyon embryos. Plant Signal Behav 10(5):e1011948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bourdon M, Coriton O, Pirrello J, Cheniclet C, Brown SC, Poujol C, Chevalier C, Renaudin JP, Frangne N (2011) In planta quantification of endoreduplication using fluorescent in situ hybridization (FISH). Plant J 66(6):1089–1099

    Article  CAS  PubMed  Google Scholar 

  43. Garcia-Aguilar M, Michaud C, Leblanc O, Grimanelli D (2010) Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. Plant Cell 22(10):3249–3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bey TD, Koini M, Fransz P (2017) Fluorescence in situ hybridization (FISH) and immunolabeling on 3D preserved nuclei. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols, Methods in molecular biology. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_27

    Google Scholar 

  45. Ashenafi M, Baroux C (2017) Automated 3D gene position analysis using a customized Imaris plugin: XTFISHInsideNucleus. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols, Methods in molecular biology. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_32

    Google Scholar 

  46. She W, Baroux C, Grossniklaus U (2017) Cell-type specific chromatin analysis in whole-mount plant tissues by immunostaining. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols, Methods in molecular biology. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_25

    Google Scholar 

  47. Marques-Bueno MM, Morao AK, Cayrel A, Platre MP, Barberon M, Caillieux E, Colot V, Jaillais Y, Roudier F, Vert G (2016) A versatile multisite gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J 85(2):320–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Poulet A, Arganda-Carreras I, Legland D, Probst AV, Andrey P, Tatout C (2015) NucleusJ: an ImageJ plugin for quantifying 3D images of interphase nuclei. Bioinformatics 31(7):1144–1146

    Article  CAS  PubMed  Google Scholar 

  49. Andrey P, Kieu K, Kress C, Lehmann G, Tirichine L, Liu Z, Biot E, Adenot PG, Hue-Beauvais C, Houba-Herin N, Duranthon V, Devinoy E, Beaujean N, Gaudin V, Maurin Y, Debey P (2010) Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Comput Biol 6(7):e1000853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Desset S, Poulet A, Tatout C (2017) Quantitative 3D analysis of nuclear morphology and heterochromatin organization from whole mount plant tissue using NucleusJ. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols, Methods in molecular biology. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_33

    Google Scholar 

  51. Arpon J, Gaudin V, Andrey P (2017) A method for testing random spatial model on nuclear object distributions. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols, Methods in molecular biology. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_29

    Google Scholar 

  52. Fang Y, Spector DL (2005) Centromere positioning and dynamics in living Arabidopsis plants. Mol Biol Cell 16(12):5710–5718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Nooijer S, Wellink J, Mulder B, Bisseling T (2009) Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei. Nucleic Acids Res 37(11):3558–3568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Murphy SP, Gumber HK, Mao Y, Bass HW (2014) A dynamic meiotic SUN belt includes the zygotene-stage telomere bouquet and is disrupted in chromosome segregation mutants of maize (Zea mays L.) Front Plant Sci 5:314

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kato N, Lam E (2003) Chromatin of endoreduplicated pavement cells has greater range of movement than that of diploid guard cells in Arabidopsis thaliana. J Cell Sci 116(Pt 11):2195–2201

    Article  CAS  PubMed  Google Scholar 

  56. Lindhout BI, Meckel T, van der Zaal BJ (2010) Zinc finger-mediated live cell imaging in Arabidopsis roots. Methods Mol Biol 649:383–398

    Article  CAS  PubMed  Google Scholar 

  57. Aki SS, Umeda M (2016) Cytrap marker systems for in vivo visualization of cell cycle progression in Arabidopsis. In: Caillaud M-C (ed) Plant cell division: methods and protocols. Springer, New York, NY, pp 51–57. doi:10.1007/978-1-4939-3142-2_4

    Chapter  Google Scholar 

  58. Ingouff M, Hamamura Y, Gourgues M, Higashiyama T, Berger F (2007) Distinct dynamics of HISTONE3 variants between the two fertilization products in plants. Curr Biol 17(12):1032–1037

    Article  CAS  PubMed  Google Scholar 

  59. Ingouff M, Selles B, Michaud C, Vu TM, Berger F, Schorn AJ, Autran D, Van Durme M, Nowack MK, Martienssen RA, Grimanelli D (2017) Live-cell analysis of DNA methylation during sexual reproduction in Arabidopsis reveals context and sex-specific dynamics controlled by noncanonical RdDM. Genes Dev 31(1):72–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rosa S (2017) Measuring dynamics of histone proteins by photobleaching in Arabidopsis roots. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols, Methods in molecular biology. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_26

    Google Scholar 

  61. Padilla-Parra S, Auduge N, Coppey-Moisan M, Tramier M (2008) Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells. Biophys J 95(6):2976–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Molitor AM, Bu Z, Yu Y, Shen WH (2014) Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet 10(1):e1004091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Le Roux C, Huet G, Jauneau A, Camborde L, Tremousaygue D, Kraut A, Zhou B, Levaillant M, Adachi H, Yoshioka H, Raffaele S, Berthome R, Coute Y, Parker JE, Deslandes L (2015) A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161(5):1074–1088

    Article  PubMed  CAS  Google Scholar 

  64. Ramirez-Garces D, Camborde L, Pel MJ, Jauneau A, Martinez Y, Neant I, Leclerc C, Moreau M, Dumas B, Gaulin E (2016) CRN13 candidate effectors from plant and animal eukaryotic pathogens are DNA-binding proteins which trigger host DNA damage response. New Phytol 210(2):602–617

    Article  CAS  PubMed  Google Scholar 

  65. Tonaco IA, Borst JW, de Vries SC, Angenent GC, Immink RG (2006) In vivo imaging of MADS-box transcription factor interactions. J Exp Bot 57(1):33–42

    Article  CAS  PubMed  Google Scholar 

  66. Lleres D, James J, Swift S, Norman DG, Lamond AI (2009) Quantitative analysis of chromatin compaction in living cells using FLIM-FRET. J Cell Biol 187(4):481–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lleres D, Bailly AP, Perrin A, Norman DG, Xirodimas DP, Feil R (2017) Quantitative FLIM-FRET microscopy to monitor nanoscale chromatin compaction in vivo reveals structural roles of condensin complexes. Cell Rep 18(7):1791–1803

    Article  CAS  PubMed  Google Scholar 

  68. Lorenz M (2009) Visualizing protein-RNA interactions inside cells by fluorescence resonance energy transfer. RNA 15(1):97–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cremazy FG, Manders EM, Bastiaens PI, Kramer G, Hager GL, van Munster EB, Verschure PJ, Gadella TJ Jr, van Driel R (2005) Imaging in situ protein-DNA interactions in the cell nucleus using FRET-FLIM. Exp Cell Res 309(2):390–396

    Article  CAS  PubMed  Google Scholar 

  70. Stelzer EH (2015) Light-sheet fluorescence microscopy for quantitative biology. Nat Methods 12(1):23–26

    Article  CAS  PubMed  Google Scholar 

  71. von Wangenheim D, Daum G, Lohmann JU, Stelzer EK, Maizel A (2014) Live imaging of Arabidopsis development. Methods Mol Biol 1062:539–550

    Article  Google Scholar 

  72. Ovecka M, Vaskebova L, Komis G, Luptovciak I, Smertenko A, Samaj J (2015) Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nat Protoc 10(8):1234–1247

    Article  PubMed  CAS  Google Scholar 

  73. de Luis Balaguer MA, Ramos-Pezzotti M, Rahhal MB, Melvin CE, Johannes E, Horn TJ, Sozzani R (2016) Multi-sample Arabidopsis growth and imaging chamber (MAGIC) for long term imaging in the ZEISS Lightsheet Z.1. Dev Biol 419(1):19–25

    Article  PubMed  CAS  Google Scholar 

  74. Meinert T, Tietz O, Palme KJ, Rohrbach A (2016) Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots. Sci Rep 6:30378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Royer LA, Lemon WC, Chhetri RK, Wan Y, Coleman M, Myers EW, Keller PJ (2016) Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nat Biotechnol 34(12):1267–1278

    Article  CAS  PubMed  Google Scholar 

  76. Gualda E, Moreno N, Tomancak P, Martins GG (2014) Going “open” with mesoscopy: a new dimension on multi-view imaging. Protoplasma 251(2):363–372

    Article  PubMed  Google Scholar 

  77. Sena G, Frentz Z, Birnbaum KD, Leibler S (2011) Quantitation of cellular dynamics in growing Arabidopsis roots with light sheet microscopy. PLoS One 6(6):e21303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Novak D, Kucharova A, Ovecka M, Komis G, Samaj J (2015) Developmental nuclear localization and quantification of GFP-tagged EB1c in Arabidopsis root using light-sheet microscopy. Front Plant Sci 6:1187

    PubMed  Google Scholar 

  79. Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer EH (2011) High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68(2):377–385

    Article  CAS  PubMed  Google Scholar 

  80. Berson T, von Wangenheim D, Takac T, Samajova O, Rosero A, Ovecka M, Komis G, Stelzer EH, Samaj J (2014) Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth. BMC Plant Biol 14:252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Preibisch S, Saalfeld S, Schindelin J, Tomancak P (2010) Software for bead-based registration of selective plane illumination microscopy data. Nat Methods 7(6):418–419

    Article  CAS  PubMed  Google Scholar 

  82. Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MG (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci U S A 109(3):E135–E143

    Article  CAS  PubMed  Google Scholar 

  83. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190(2):165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ball G, Parton RM, Hamilton RS, Davis I (2012) A cell biologist’s guide to high resolution imaging. Methods Enzymol 504:29–55

    Article  CAS  PubMed  Google Scholar 

  85. Agrawal U, Reilly DT, Schroeder CM (2013) Zooming in on biological processes with fluorescence nanoscopy. Curr Opin Biotechnol 24(4):646–653

    Article  CAS  PubMed  Google Scholar 

  86. Allen JR, Ross ST, Davidson MW (2014) Structured illumination microscopy for superresolution. ChemPhysChem 15(4):566–576

    Article  CAS  PubMed  Google Scholar 

  87. Komis G, Samajova O, Ovecka M, Samaj J (2015) Super-resolution microscopy in plant cell imaging. Trends Plant Sci 20(12):834–843

    Article  CAS  PubMed  Google Scholar 

  88. Nienhaus K, Nienhaus GU (2016) Where do we stand with super-resolution optical microscopy? J Mol Biol 428(2 Pt A):308–322

    Article  CAS  PubMed  Google Scholar 

  89. Coltharp C, Xiao J (2012) Superresolution microscopy for microbiology. Cell Microbiol 14(12):1808–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dame RT, Tark-Dame M (2016) Bacterial chromatin: converging views at different scales. Curr Opin Cell Biol 40:60–65

    Article  CAS  PubMed  Google Scholar 

  91. Fornasiero EF, Opazo F (2015) Super-resolution imaging for cell biologists: concepts, applications, current challenges and developments. Bioessays 37(4):436–451

    Article  PubMed  Google Scholar 

  92. Schubert V (2017) Super-resolution microscopy - applications in plant cell research. Front Plant Sci 8:531

    Article  PubMed  PubMed Central  Google Scholar 

  93. Markaki Y, Smeets D, Fiedler S, Schmid VJ, Schermelleh L, Cremer T, Cremer M (2012) The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture. Bioessays 34(5):412–426

    Article  PubMed  Google Scholar 

  94. Markaki Y, Gunkel M, Schermelleh L, Beichmanis S, Neumann J, Heidemann M, Leonhardt H, Eick D, Cremer C, Cremer T (2010) Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harb Symp Quant Biol 75:475–492

    Article  CAS  PubMed  Google Scholar 

  95. Schubert V (2014) RNA polymerase II forms transcription networks in rye and Arabidopsis nuclei and its amount increases with endopolyploidy. Cytogenet Genome Res 143(1-3):69–77

    Article  CAS  PubMed  Google Scholar 

  96. Schubert V, Lermontova I, Schubert I (2013) The Arabidopsis CAP-D proteins are required for correct chromatin organisation, growth and fertility. Chromosoma 122(6):517–533

    Article  CAS  PubMed  Google Scholar 

  97. Ma W, Gabriel TS, Martis MM, Gursinsky T, Schubert V, Vrana J, Dolezel J, Grundlach H, Altschmied L, Scholz U, Himmelbach A, Behrens SE, Banaei-Moghaddam AM, Houben A (2016) Rye B chromosomes encode a functional Argonaute-like protein with in vitro slicer activities similar to its A chromosome paralog. New Phytol 213(2):916–928

    Article  PubMed  CAS  Google Scholar 

  98. Zakrzewski F, Schubert V, Viehoever P, Minoche AE, Dohm JC, Himmelbauer H, Weisshaar B, Schmidt T (2014) The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation. Plant J 78(6):937–950

    Article  CAS  PubMed  Google Scholar 

  99. Ishii T, Karimi-Ashtiyani R, Banaei-Moghaddam AM, Schubert V, Fuchs J, Houben A (2015) The differential loading of two barley CENH3 variants into distinct centromeric substructures is cell type- and development-specific. Chromosome Res 23(2):277–284

    Article  CAS  PubMed  Google Scholar 

  100. Demidov D, Schubert V, Kumke K, Weiss O, Karimi-Ashtiyani R, Buttlar J, Heckmann S, Wanner G, Dong Q, Han F, Houben A (2014) Anti-phosphorylated histone H2AThr120: a universal microscopic marker for centromeric chromatin of mono- and holocentric plant species. Cytogenet Genome Res 143(1-3):150–156

    Article  CAS  PubMed  Google Scholar 

  101. Neumann P, Schubert V, Fukova I, Manning JE, Houben A, Macas J (2016) Epigenetic histone marks of extended meta-polycentric centromeres of Lathyrus and Pisum chromosomes. Front Plant Sci 7:234

    Article  PubMed  PubMed Central  Google Scholar 

  102. Weisshart K, Fuchs J, Schubert V (2016) Structured illumination microscopy (SIM) and photoactivated localization microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules in flow-sorted Arabidopsis nuclei. Bio Protocol 6(3): e1725. http://wwwbio-protocolorg/e1725

    Google Scholar 

  103. Heckmann S, Macas J, Kumke K, Fuchs J, Schubert V, Ma L, Novak P, Neumann P, Taudien S, Platzer M, Houben A (2013) The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization. Plant J 73(4):555–565

    Article  CAS  PubMed  Google Scholar 

  104. Marques A, Ribeiro T, Neumann P, Macas J, Novak P, Schubert V, Pellino M, Fuchs J, Ma W, Kuhlmann M, Brandt R, Vanzela AL, Beseda T, Simkova H, Pedrosa-Harand A, Houben A (2015) Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proc Natl Acad Sci USA 112(44):13633–13638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ribeiro SA, Vagnarelli P, Dong Y, Hori T, McEwen BF, Fukagawa T, Flors C, Earnshaw WC (2010) A super-resolution map of the vertebrate kinetochore. Proc Natl Acad Sci USA 107(23):10484–10489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dürr J, Lolas IB, Sorensen BB, Schubert V, Houben A, Melzer M, Deutzmann R, Grasser M, Grasser KD (2014) The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in Arabidopsis. Nucleic Acids Res 42(7):4332–4347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Antosz W, Pfab A, Ehrnsberger H, Holzinger H, Köllen K, Mortensen S, Bruckmann A, Schubert T, Längst G, Griesenbeck J, Schubert V, Grasser M, Grasser K (2017) Composition of the Arabidopsis RNA polymerase II transcript elongation complex reveals interplay of elongation and mRNA processing factors. Plant Cell 29(4):854–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Marques A, Schubert V, Houben A, Pedrosa-Harand A (2016) Restructuring of holocentric centromeres during meiosis in the plant Rhynchospora pubera. Genetics 204(2):555–568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Schubert V, Ruban A, Houben A (2016) Chromatin ring formation at plant centromeres. Front Plant Sci 7:28

    PubMed  PubMed Central  Google Scholar 

  110. Schubert V, Zelkowski M, Klemme S, Houben A (2016) Similar sister chromatid arrangement in mono- and holocentric plant chromosomes. Cytogenet Genome Res 149(3):218–225

    Article  CAS  PubMed  Google Scholar 

  111. Ball G, Demmerle J, Kaufmann R, Davis I, Dobbie IM, Schermelleh L (2015) SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci Rep 5:15915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schubert V, Weisshart K (2015) Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei. J Exp Bot 66(6):1687–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8(12):1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943

    Article  CAS  PubMed  Google Scholar 

  115. Hedde PN, Nienhaus GU (2014) Super-resolution localization microscopy with photoactivatable fluorescent marker proteins. Protoplasma 251(2):349–362

    Article  CAS  PubMed  Google Scholar 

  116. Olivier N, Keller D, Gonczy P, Manley S (2013) Resolution doubling in 3D-STORM imaging through improved buffers. PLoS One 8(7):e69004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Flors C (2013) Super-resolution fluorescence imaging of directly labelled DNA: from microscopy standards to living cells. J Microsc 251(1):1–4

    Article  CAS  PubMed  Google Scholar 

  118. Flors C, Earnshaw WC (2011) Super-resolution fluorescence microscopy as a tool to study the nanoscale organization of chromosomes. Curr Opin Chem Biol 15(6):838–844

    Article  CAS  PubMed  Google Scholar 

  119. Hamel V, Guichard P, Fournier M, Guiet R, Fluckiger I, Seitz A, Gonczy P (2014) Correlative multicolor 3D SIM and STORM microscopy. Biomed Opt Express 5(10):3326–3336

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wurm CA, Kolmakov K, Göttfert F, Ta H, Bossi M, Schill H, Berning S, Jakobs S, Donnert G, Belov VN, Hell SW (2012) Novel red fluorophores with superior performance in STED microscopy. Optical Nanosc 1(1):7

    Article  Google Scholar 

  121. Wanner G, Schroeder-Reiter E (2008) Scanning electron microscopy of chromosomes. Methods Cell Biol 88:451

    Article  CAS  PubMed  Google Scholar 

  122. Schubert I, Dolezel J, Houben A, Scherthan H, Wanner G (1993) Refined examination of plant metaphase chromosome structure at different levels made feasible by new isolation methods. Chromosoma 102(2):96–101

    Article  Google Scholar 

  123. Wanner G, Formanek H, Martin R, Herrmann RG (1991) High-resolution scanning electron-microscopy of plant chromosomes. Chromosoma 100(2):103–109

    Article  Google Scholar 

  124. Martin R, Busch W, Herrmann RG, Wanner G (1994) Efficient preparation of plant chromosomes for high-resolution scanning electron microscopy. Chromosome Res 2(5):411–415

    Article  CAS  PubMed  Google Scholar 

  125. Iwano M, Che FS, Takayama S, Fukui K, Isogai A (2003) Three-dimensional architecture of ribosomal DNA within barley nucleoli revealed with electron microscopy. Scanning 25(5):257–263

    Article  CAS  PubMed  Google Scholar 

  126. Jander G, Wendt H (1960) Lehrbuch der analytischen und präparativen anorganischen Chemie. Hirzel Verlag, Leipzig

    Google Scholar 

  127. Wanner G, Formanek H (1995) Imaging of DNA in human and plant chromosomes by high-resolution scanning electron microscopy. Chromosome Res 3(6):368–374

    Article  CAS  PubMed  Google Scholar 

  128. Wanner G, Formanek H (2000) A new chromosome model. J Struct Biol 132(2):147–161

    Article  CAS  PubMed  Google Scholar 

  129. Schroeder-Reiter E, Houben A, Wanner G (2003) Immunogold labeling of chromosomes for scanning electron microscopy: a closer look at phosphorylated histone H3 in mitotic metaphase chromosomes of Hordeum vulgare. Chromosome Res 11(6):585–596

    Article  CAS  PubMed  Google Scholar 

  130. Schroeder-Reiter E, Perez-Willard F, Zeile U, Wanner G (2009) Focused ion beam (FIB) combined with high resolution scanning electron microscopy: a promising tool for 3D analysis of chromosome architecture. J Struct Biol 165(2):97–106

    Article  CAS  PubMed  Google Scholar 

  131. Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116(3):275–283

    Article  CAS  PubMed  Google Scholar 

  132. Schroeder-Reiter E, Houben A, Grau J, Wanner G (2006) Characterization of a peg-like terminal NOR structure with light microscopy and high-resolution scanning electron microscopy. Chromosoma 115(1):50–59

    Article  PubMed  Google Scholar 

  133. Schroeder-Reiter E, Sanei M, Houben A, Wanner G (2012) Current SEM techniques for de- and re-construction of centromeres to determine 3D CENH3 distribution in barley mitotic chromosomes. J Microsc 246(1):96–106

    Article  CAS  PubMed  Google Scholar 

  134. Neumann P, Navratilova A, Schroeder-Reiter E, Koblizkova A, Steinbauerova V, Chocholova E, Novak P, Wanner G, Macas J (2012) Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet 8(6):e1002777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wanner G, Schroeder-Reiter E, Formanek H (2005) 3D analysis of chromosome architecture: advantages and limitations with SEM. Cytogenet Genome Res 109(1-3):70–78

    Article  CAS  PubMed  Google Scholar 

  136. Zoller JF, Herrmann RG, Wanner G (2004) Chromosome condensation in mitosis and meiosis of rye (Secale cereale L.) Cytogenet Genome Res 105(1):134–144

    Article  CAS  PubMed  Google Scholar 

  137. Zoller JF, Hohmann U, Herrmann RG, Wanner G (2004) Ultrastructural analysis of chromatin in meiosis I + II of rye (Secale cereale L.) Cytogenet Genome Res 105(1):145–156

    Article  CAS  PubMed  Google Scholar 

  138. Heckmann S, Schroeder-Reiter E, Kumke K, Ma L, Nagaki K, Murata M, Wanner G, Houben A (2011) Holocentric chromosomes of Luzula elegans are characterized by a longitudinal centromere groove, chromosome bending, and a terminal nucleolus organizer region. Cytogenet Genome Res 134(3):220–228

    Article  CAS  PubMed  Google Scholar 

  139. Schroeder-Reiter E, Wanner G (2009) Chromosome centromeres: structural and analytical investigations with high resolution scanning electron microscopy in combination with focused ion beam milling. Cytogenet Genome Res 124(3-4):239–250

    Article  CAS  PubMed  Google Scholar 

  140. Dwiranti A, Lin L, Mochizuki E, Kuwabata S, Takaoka A, Uchiyama S, Fukui K (2012) Chromosome observation by scanning electron microscopy using ionic liquid. Microsc Res Tech 75(8):1113–1118

    Article  CAS  PubMed  Google Scholar 

  141. Hamano T, Dwiranti A, Kaneyoshi K, Fukuda S, Kometani R, Nakao M, Takata H, Uchiyama S, Ohmido N, Fukui K (2014) Chromosome interior observation by focused ion beam/scanning electron microscopy (FIB/SEM) using ionic liquid technique. Microsc Microanal 20(5):1340–1347

    Article  CAS  PubMed  Google Scholar 

  142. Houben A, Demidov D, Rutten T, Scheidtmann KH (2005) Novel phosphorylation of histone H3 at threonine 11 that temporally correlates with condensation of mitotic and meiotic chromosomes in plant cells. Cytogenet Genome Res 109(1-3):148–155

    Article  CAS  PubMed  Google Scholar 

  143. Cherkezyan L, Stypula-Cyrus Y, Subramanian H, White C, Dela Cruz M, Wali RK, Goldberg MJ, Bianchi LK, Roy HK, Backman V (2014) Nanoscale changes in chromatin organization represent the initial steps of tumorigenesis: a transmission electron microscopy study. BMC Cancer 14:189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Fabrice TN, Cherkezeyan L, Ringli C, Baroux C (2017) Transmission electron microscopy imaging to analyse chromatin density distribution at the nanoscale level. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols, Methods in molecular biology. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_34

    Google Scholar 

  145. Meijering E, Carpenter AE, Peng H, Hamprecht FA, Olivo-Marin JC (2016) Imagining the future of bioimage analysis. Nat Biotechnol 34(12):1250–1255

    Article  CAS  PubMed  Google Scholar 

  146. Haider SA, Cameron A, Siva P, Lui D, Shafiee MJ, Boroomand A, Haider N, Wong A (2016) Fluorescence microscopy image noise reduction using a stochastically-connected random field model. Sci Rep 6:20640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pavlova P, Tessadori F, de Jong HJ, Fransz P (2010) Immunocytological analysis of chromatin in isolated nuclei. Methods Mol Biol 655:413–432

    Article  CAS  PubMed  Google Scholar 

  148. Fransz P, ten Hoopen R, Tessadori F (2006) Composition and formation of heterochromatin in Arabidopsis thaliana. Chromosome Res 14(1):71–82

    Article  CAS  PubMed  Google Scholar 

  149. van Zanten M, Tessadori F, Peeters AJ, Fransz P (2012) Shedding light on large-scale chromatin reorganization in Arabidopsis thaliana. Mol Plant 5(3):583–590

    Article  PubMed  CAS  Google Scholar 

  150. Fransz PF, de Jong JH (2002) Chromatin dynamics in plants. Curr Opin Plant Biol 5(6):560–567

    Article  CAS  PubMed  Google Scholar 

  151. Almassalha LM, Tiwari A, Ruhoff PT, Stypula-Cyrus Y, Cherkezyan L, Matsuda H, Dela Cruz MA, Chandler JE, White C, Maneval C, Subramanian H, Szleifer I, Roy HK, Backman V (2017) The global relationship between chromatin physical topology, fractal structure, and gene expression. Sci Rep 7:41061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ricci MA, Manzo C, Garcia-Parajo MF, Lakadamyali M, Cosma MP (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160(6):1145–1158

    Article  CAS  PubMed  Google Scholar 

  153. Chytilova E, Macas J, Sliwinska E, Rafelski SM, Lambert GM, Galbraith DW (2000) Nuclear dynamics in Arabidopsis thaliana. Mol Biol Cell 11(8):2733–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Higa T, Suetsugu N, Wada M (2014) Plant nuclear photorelocation movement. J Exp Bot 65(11):2873–2881

    Article  PubMed  Google Scholar 

  155. Qiu M, Yang G (2013) Drift correction for fluorescence live cell imaging through correlated motion identification. In: 10th Intern Symp Biomed Imaging, 7–11 April 2013. pp 452–455. doi:10.1109/ISBI.2013.6556509

    Google Scholar 

  156. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  157. Van Bruaene N, Joss G, Thas O, Van Oostveldt P (2003) Four-dimensional imaging and computer-assisted track analysis of nuclear migration in root hairs of Arabidopsis thaliana. J Microsc 211(Pt 2):167–178

    Article  PubMed  Google Scholar 

  158. Uchida S (2013) Image processing and recognition for biological images. Dev Growth Differ 55(4):523–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Poulet A, Duc C, Voisin M, Desset S, Tutois S, Vanrobays E, Benoit M, Evans DE, Probst AV, Tatout C (2017) The LINC complex contributes to heterochromatin organisation and transcriptional gene silencing in plants. J Cell Sci 130(3):590–601

    Article  CAS  PubMed  Google Scholar 

  160. Paunovic I, She W, Baroux C (2013) http://www.bitplane.com/learning/quantification-of-chromatin-modifications-in-whole-mount-plant-tissue-tutorial

  161. Faure E, Savy T, Rizzi B, Melani C, Stasova O, Fabreges D, Spir R, Hammons M, Cunderlik R, Recher G, Lombardot B, Duloquin L, Colin I, Kollar J, Desnoulez S, Affaticati P, Maury B, Boyreau A, Nief JY, Calvat P, Vernier P, Frain M, Lutfalla G, Kergosien Y, Suret P, Remesikova M, Doursat R, Sarti A, Mikula K, Peyrieras N, Bourgine P (2016) A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage. Nat Commun 7:8674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Amat F, Lemon W, Mossing DP, McDole K, Wan Y, Branson K, Myers EW, Keller PJ (2014) Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat Methods 11(9):951–958

    Article  CAS  PubMed  Google Scholar 

  163. Fernandez R, Das P, Mirabet V, Moscardi E, Traas J, Verdeil JL, Malandain G, Godin C (2010) Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat Methods 7(7):547–553

    Article  CAS  PubMed  Google Scholar 

  164. Bassel GW, Smith RS (2016) Quantifying morphogenesis in plants in 4D. Curr Opin Plant Biol 29:87–94

    Article  PubMed  Google Scholar 

  165. Chalut KJ, Ekpenyong AE, Clegg WL, Melhuish IC, Guck J (2012) Quantifying cellular differentiation by physical phenotype using digital holographic microscopy. Integrat Biol 4(3):280–284

    Article  CAS  Google Scholar 

  166. Kus A, Dudek M, Kemper B, Kujawinska M, Vollmer A (2014) Tomographic phase microscopy of living three-dimensional cell cultures. J Biomed Opt 19(4):046009

    Article  PubMed  Google Scholar 

  167. Cherkezyan L, Zhang D, Subramanian H, Taflove A, Backman V (2016) Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy. J Biomed Opt 21(2):025007–025007

    Article  PubMed Central  Google Scholar 

  168. Shachar S, Voss TC, Pegoraro G, Sciascia N, Misteli T (2015) Identification of gene positioning factors using high-throughput imaging mapping. Cell 162(4):911–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lindhout BI, Fransz P, Tessadori F, Meckel T, Hooykaas PJ, van der Zaal BJ (2007) Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res 35(16):e107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Fujimoto S, Sugano SS, Kuwata K, Osakabe K, Matsunaga S (2016) Visualization of specific repetitive genomic sequences with fluorescent TALEs in Arabidopsis thaliana. J Exp Bot 67(21):6101–6110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S, Pederson T (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci USA 112(10):3002–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dreissig S, Schiml S, Schindele P, Weiss O, Rutten T, Schubert V, Gladilin E, Mette M, Puchta H, Houben A (2017) Live cell CRISPR-imaging in plants reveals dynamic telomere movements. Plant J. doi:10.1111/tpj.13601

  173. Pawley JB (2013) Handbook of biological confocal microscopy. Springer, New York, NY

    Google Scholar 

  174. Wilson T, Tan JB (1993) Three dimensional image reconstruction in conventional and confocal microscopy. Bioimaging 1(3):176–184

    Article  Google Scholar 

  175. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5(2):159–161

    Article  CAS  PubMed  Google Scholar 

  176. Beier HT, Ibey BL (2014) Experimental comparison of the high-speed imaging performance of an EM-CCD and sCMOS camera in a dynamic live-cell imaging test case. PLoS One 9(1):e84614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Zemach A, Li Y, Wayburn B, Ben-Meir H, Kiss V, Avivi Y, Kalchenko V, Jacobsen SE, Grafi G (2005) DDM1 binds Arabidopsis methyl-CpG binding domain proteins and affects their subnuclear localization. Plant Cell 17(5):1549–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Libault M, Tessadori F, Germann S, Snijder B, Fransz P, Gaudin V (2005) The Arabidopsis LHP1 protein is a component of euchromatin. Planta 222(5):910–925

    Article  CAS  PubMed  Google Scholar 

  179. Koroleva OA, Calder G, Pendle AF, Kim SH, Lewandowska D, Simpson CG, Jones IM, Brown JW, Shaw PJ (2009) Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia. Plant Cell 21(5):1592–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yu X, Sayegh R, Maymon M, Warpeha K, Klejnot J, Yang H, Huang J, Lee J, Kaufman L, Lin C (2009) Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation. Plant Cell 21(1):118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, Richards EJ (2007) LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell 19(9):2793–2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Guggisberg A, Baroux C, Grossniklaus U, Conti E (2008) Genomic origin and organization of the allopolyploid Primula egaliksensis investigated by in situ hybridization. Ann Bot 101(7):919–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wanner G, Schroeder-Reiter E, Ma W, Houben A, Schubert V (2015) The ultrastructure of mono- and holocentric plant centromeres: an immunological investigation by structured illumination microscopy and scanning electron microscopy. Chromosoma 124(4):503–517

    Article  CAS  PubMed  Google Scholar 

  184. Baroux C, Pecinka A, Fuchs J, Schubert I, Grossniklaus U (2007) The triploid endosperm genome of Arabidopsis adopts a peculiar, parental-dosage-dependent chromatin organization. Plant Cell 19(6):1782–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Käthner R, Zölffel M (2016) Light microscopy - technology and application. Süddeutscher Verlag onpact GmbH, Munich

    Google Scholar 

  186. Becker W, Su B, Holub O, Weisshart K (2011) FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors. Microsc Res Tech 74(9):804–811

    CAS  PubMed  Google Scholar 

  187. Feijo JA, Moreno N (2004) Imaging plant cells by two-photon excitation. Protoplasma 223(1):1–32

    Article  PubMed  Google Scholar 

  188. Benninger RK, Piston DW (2013) Two-photon excitation microscopy for the study of living cells and tissues. Curr Protoc Cell Biol. Chapter 4:Unit 4 11 11–24

    Google Scholar 

  189. Weber M, Huisken J (2011) Light sheet microscopy for real-time developmental biology. Curr Opin Genet Dev 21(5):566–572

    Article  CAS  PubMed  Google Scholar 

  190. Power RM, Huisken J (2017) A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat Methods 14(4):360–373

    Article  CAS  PubMed  Google Scholar 

  191. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9(1):413–468

    Article  Google Scholar 

  192. Rayleigh L (1896) On the theory of optical images, with special reference to the microscope. Philos Mag 42:167–195

    Article  Google Scholar 

  193. Van Noorden R (2014) Insider view of cells scoops Nobel. Nature 514(7522):286

    Article  PubMed  CAS  Google Scholar 

  194. Erni R, Rossell MD, Kisielowski C, Dahmen U (2009) Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102(9):096101

    Article  PubMed  CAS  Google Scholar 

  195. Lobet G, Draye X, Perilleux C (2013) An online database for plant image analysis software tools. Plant Methods 9(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  196. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wan Y, Otsuna H, Chien C-B, Hansen C (2012) FluoRender: an application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research. IEEE Pacific Visualization Symposium [proceedings], pp 201–208

    Google Scholar 

  198. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

CB is funded by the Swiss National Science Foundation (SNSF), the University of Zürich and SystemsX.ch. CB acknowledges the expert assistance and training provided by the Microscopy Facility of the University of Zürich particularly in TEM, LSM and SRM imaging (ZMB, Prof. Urs Ziegler, Jana Doehner, Dominik Haenni, Moritz Kirschmann, Andreas Kaech), Mariamawit Ashenafi for the 3D image file used in Fig. 3c3. We thank Jörg Fuchs for flow sorting of nuclei, Martina Kühne and Andrea Kunze for slide preparation, Andreas Houben, Gerhard Wanner and Klaus Weisshart for critical reading of the manuscript, Marian Bemer for critical reading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia Baroux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Baroux, C., Schubert, V. (2018). Technical Review: Microscopy and Image Processing Tools to Analyze Plant Chromatin: Practical Considerations. In: Bemer, M., Baroux, C. (eds) Plant Chromatin Dynamics. Methods in Molecular Biology, vol 1675. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7318-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7318-7_31

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7317-0

  • Online ISBN: 978-1-4939-7318-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics