Skip to main content

Technical Review: Cytogenetic Tools for Studying Mitotic Chromosomes

  • Protocol
  • First Online:
Plant Chromatin Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1675))

Abstract

Significant advances in chromosome preparation and other techniques have greatly increased the potential of plant cytogenetics in recent years. Increase in longitudinal resolution using DNA extended fibers as well as new developments in imaging and signal amplification technologies have enhanced the ability of FISH to detect small gene targets. The combination of fluorescence in situ hybridization with immunocytochemistry allows the investigation of cell events, chromosomal rearrangements and chromatin features typical for plant nuclei. Chromosome manipulation techniques using microdissection and flow sorting have accelerated the analysis of complex plant genomes. Together, the different cytogenetic approaches are invaluable for the unravelling of detailed structures of plant chromosomes, which are of utmost importance for the study of genome properties, DNA replication and gene regulation. In this technical review, different cytogenetic approaches are discussed for the analysis of plant chromosomes, with a focus on mitotic chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 6814):796-815.. doi:http://www.nature.com/nature/journal/v408/n6814/suppinfo/408796a0_S1.html

  2. Cools T, Iantcheva A, Maes S, Van den Daele H, De Veylder L (2010) A replication stress-induced synchronization method for Arabidopsis thaliana root meristems. Plant J 64(4):705–714. doi:10.1111/j.1365-313X.2010.04361.x

    Article  CAS  PubMed  Google Scholar 

  3. Halfmann RASD, Young DH (2007) Towards improved cell cycle synchronization and chromosome preparation. Method Cotton Sci 67:60–67

    Google Scholar 

  4. Andersson HC (1983) Hydroxyurea induces sister chromatid exchanges in G2: implications for the formation of chromosomal aberrations. Hereditas 98(1):61–64. doi:10.1111/j.1601-5223.1983.tb00578.x

    Article  CAS  Google Scholar 

  5. Dolezel J, Cihalikova J, Lucretti S (1992) A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta 188(1):93–98

    Article  CAS  PubMed  Google Scholar 

  6. Pan WH, Houben A, Schlegel R (1993) Highly effective cell synchronization in plant roots by hydroxyurea and amiprophos-methyl or colchicine. Genome 36(2):387–390. doi:10.1139/g93-053

    Article  CAS  PubMed  Google Scholar 

  7. Karafiátová M, Bartoš J, Doležel J (2016) Localization of low-copy DNA sequences on mitotic chromosomes by FISH. In: Kianian SF, Kianian PMA (eds) Plant cytogenetics: methods and protocols. Springer, New York, NY, pp 49–64. doi:10.1007/978-1-4939-3622-9_5

    Chapter  Google Scholar 

  8. Karafiátová M, Bartoš J, Kopecký D, Ma L, Sato K, Houben A, Stein N, Doležel J (2013) Mapping nonrecombining regions in barley using multicolor FISH. Chromosome Res 21(8):739–751. doi:10.1007/s10577-013-9380-x

    Article  PubMed  Google Scholar 

  9. Martin R, Busch W, Herrmann RG, Wanner G (1994) Efficient preparation of plant chromosomes for high-resolution scanning electron microscopy. Chromosome Res 2(5):411–415. doi:10.1007/bf01552801

    Article  CAS  PubMed  Google Scholar 

  10. Kato A, Kato A, Albert PS, Vega JM, Kato A, Albert PS, Vega JM, Birchler JA (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81(2-3):71–78. doi:10.1080/10520290600643677

    Article  PubMed  Google Scholar 

  11. Aliyeva-Schnorr L, Ma L, Houben A (2015) A fast air-dry dropping chromosome preparation method suitable for fish in plants. J Vis Exp (106):e53470. doi:10.3791/53470

  12. Hobza R, Vyskot B (2007) Laser microdissection-based analysis of plant sex chromosomes. In: Methods in cell biology, vol 82. Academic Press, New York, NY, pp 433–453. doi:10.1016/S0091-679X(06)82015-7

    Google Scholar 

  13. Tessadori F, Chupeau M-C, Chupeau Y, Knip M, Germann S, van Driel R, Fransz P, Gaudin V (2007) Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci 120(7):1200–1208. doi:10.1242/jcs.000026

    Article  CAS  PubMed  Google Scholar 

  14. Khlestkina EK (2014) Current applications of wheat and wheat–alien precise genetic stocks. Mol Breed 34(2):273–281. doi:10.1007/s11032-014-0049-8

    Article  CAS  Google Scholar 

  15. Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S (2013) FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8(2):e57994. doi:10.1371/journal.pone.0057994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lebo RV (1982) Chromosome sorting and DNA sequence localization. Cytometry 3(3):145–154. doi:10.1002/cyto.990030302

    Article  CAS  PubMed  Google Scholar 

  17. Raap AK, van de Corput MPC, Vervenne RAM, van Gijlswijk RPM, Tanke HJ, Wiegant J (1995) Ultra-sensitive FISH using peroxidase-mediated deposition of biotin- or fluorochrome tyramides. Hum Mol Genet 4(4):529–534. doi:10.1093/hmg/4.4.529

    Article  CAS  PubMed  Google Scholar 

  18. Schubert I, Fransz PF, Fuchs J, de Jong JH (2001) Chromosome painting in plants. Methods Cell Sci 23(1):57–69. doi:10.1023/a:1013137415093

    Article  CAS  PubMed  Google Scholar 

  19. Doležel J, Vrána J, Šafář J, Bartoš J, Kubaláková M, Šimková H (2012) Chromosomes in the flow to simplify genome analysis. Funct Integr Genomics 12(3):397–416. doi:10.1007/s10142-012-0293-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chambers R, Sands HC (1923) A dissection of the chromosomes in the pollen mother cells of tradescantia virginica L. J Gen Physiol 5(6):815–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Di Bucchianico S, Poma AM, Giardi MF, Di Leandro L, Valle F, Biscarini F, Botti D (2011) Atomic force microscope nanolithography on chromosomes to generate single-cell genetic probes. J Nanobiotechnol 9:27–27. doi:10.1186/1477-3155-9-27

    Article  Google Scholar 

  22. Deng C-l, R-y Q, Cao Y, Gao J, S-f L, Gao W-j, Lu L-d (2013) Microdissection and painting of the Y chromosome in spinach (Spinacia oleracea). J Plant Res 126(4):549–556. doi:10.1007/s10265-013-0549-3

    Article  CAS  PubMed  Google Scholar 

  23. Yakovin N, Divashuk M, Yakovin N, Razumova O, Soloviev A, Karlov G (2014) Use of laser microdissection for the construction of Humulus japonicus Siebold et Zuccarini, 1846 (Cannabaceae) sex chromosome-specific DNA library and cytogenetics analysis. Compar Cytogenet 8(4):323. doi:10.3897/CompCytogen.v8i4.8473

    Article  Google Scholar 

  24. Sandery MJ, Forster JW, Macadam SR, Blunden R, Jones RN, Brown SDM (1991) Isolation of a sequence common to A- and B-chromosomes of rye (Secale cereale) by microcloning. Plant Mol Biol Rep 9(1):21–30. doi:10.1007/bf02669286

    Article  CAS  Google Scholar 

  25. Liu B, Segal G, Vega JM, Feldman M, Abbo S (1997) Isolation and characterization of chromosome-specific DNA sequences from a chromosome arm genomic library of common wheat. Plant J 11(5):959–965. doi:10.1046/j.1365-313X.1997.11050959.x

    Article  CAS  Google Scholar 

  26. Stein N, Ponelies N, Musket T, McMullen M, Weber G (1998) Chromosome micro-dissection and region-specific libraries from pachytene chromosomes of maize (Zea mays L.) Plant J 13(2):281–289. doi:10.1046/j.1365-313X.1998.00033.x

    Article  CAS  Google Scholar 

  27. Ludecke H-J, Senger G, Claussen U, Horsthemke B (1989) Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification. Nature 338(6213):348–350

    Article  CAS  PubMed  Google Scholar 

  28. Kato A, Vega JM, Han F, Lamb JC, Birchler JA (2005) Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol 8(2):148–154. doi:10.1016/j.pbi.2005.01.014

    Article  CAS  PubMed  Google Scholar 

  29. Schwarzacher T (2003) DNA, chromosomes, and in situ hybridization. Genome 46(6):953–962. doi:10.1139/g03-119

    Article  CAS  PubMed  Google Scholar 

  30. Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien MA, Leitch AR (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175(4):756–763. doi:10.1111/j.1469-8137.2007.02121.x

    Article  CAS  PubMed  Google Scholar 

  31. Kubat Z, Hobza R, Vyskot B, Kejnovsky E (2008) Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome 51(5):350–356. doi:10.1139/G08-024

    Article  CAS  PubMed  Google Scholar 

  32. Baroux C, Pecinka A, Fuchs J, Schubert I, Grossniklaus U (2007) The triploid endosperm genome of arabidopsis adopts a peculiar, parental-dosage-dependent chromatin organization. Plant Cell 19(6):1782–1794. doi:10.1105/tpc.106.046235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    Article  CAS  PubMed  Google Scholar 

  34. Gindullis F, Desel C, Galasso I, Schmidt T (2001) The large-scale organization of the centromeric region in Beta species. Genome Res 11(2):253. doi:10.1101/gr.162301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, Widmer A, Doležel J, Macas J (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2(1):4. doi:10.1186/1759-8753-2-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A, Macas J, Vyskot B, Kejnovsky E (2008) Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res 16(7):961–976. doi:10.1007/s10577-008-1254-2

    Article  CAS  PubMed  Google Scholar 

  37. Kralova T, Cegan R, Kubat Z, Vrana J, Vyskot B, Vogel I, Kejnovsky E, Hobza R (2014) Identification of a novel retrotransposon with sex chromosome-specific distribution in silene latifolia. Cytogenet Genome Res 143(1-3):87–95

    Article  CAS  PubMed  Google Scholar 

  38. Hobza R, Kubat Z, Cegan R, Jesionek W, Vyskot B, Kejnovsky E (2015) Impact of repetitive DNA on sex chromosome evolution in plants. Chromosome Res 23(3):561–570. doi:10.1007/s10577-015-9496-2

    Article  CAS  PubMed  Google Scholar 

  39. Bennetzen JL (2000) The many hues of plant heterochromatin. Genome Biol 1(1):reviews107.101–reviews107.104

    Article  Google Scholar 

  40. Fransz PF, Armstrong S, de Jong JH, Parnell LD, van Drunen C, Dean C, Zabel P, Bisseling T, Jones GH (2000) Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100(3):367–376. doi:10.1016/S0092-8674(00)80672-8

    Article  CAS  PubMed  Google Scholar 

  41. Mehrotra S, Goyal V (2014) Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics Proteomics Bioinformatics 12(4):164–171. doi:10.1016/j.gpb.2014.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  42. Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I (2003) Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J 33(6):967–973. doi:10.1046/j.1365-313X.2003.01681.x

    Article  CAS  PubMed  Google Scholar 

  43. Richards EJ, Dawe RK (1998) Plant centromeres: structure and control. Curr Opin Plant Biol 1(2):130–135. doi:10.1016/S1369-5266(98)80014-9

    Article  CAS  PubMed  Google Scholar 

  44. Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, Garcia JF, DeRisi JL, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan SWL (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14(1):R10–R10. doi:10.1186/gb-2013-14-1-r10

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fransz P, Armstrong S, Alonso-blanco C, Fischer TC, Torres-ruiz RA, Jones G (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13(6):867–876. doi:10.1046/j.1365-313X.1998.00086.x

    Article  CAS  PubMed  Google Scholar 

  46. Koo D-H, Plaha P, Lim YP, Hur Y, Bang J-W (2004) A high-resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Theor Appl Genet 109(7):1346–1352. doi:10.1007/s00122-004-1771-0

    Article  PubMed  Google Scholar 

  47. Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A 101(37):13554–13559. doi:10.1073/pnas.0403659101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Široký J, Lysák MA, Doležel J, Kejnovský E, Vyskot B (2001) Heterogeneity of rDNA distribution and genome size in Silene spp. Chromosome Res 9(5):387–393. doi:10.1023/a:1016783501674

    Article  PubMed  Google Scholar 

  49. Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor Appl Genet 105(4):491–497. doi:10.1007/s00122-002-0975-4

    Article  PubMed  Google Scholar 

  50. Vischi M, Jurman I, Bianchi G, Morgante M (2003) Karyotype of Norway spruce by multicolor FISH. Theor Appl Genet 107(4):591–597. doi:10.1007/s00122-003-1306-0

    Article  CAS  PubMed  Google Scholar 

  51. Divashuk MG, Alexandrov OS, Razumova OV, Kirov IV, Karlov GI (2014) Molecular cytogenetic characterization of the dioecious cannabis sativa with an XY chromosome sex determination system. PLoS One 9(1):e85118. doi:10.1371/journal.pone.0085118

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lysak MA, Mandáková T, Lacombe E (2010) Reciprocal and multi-species chromosome BAC painting in crucifers (Brassicaceae). Cytogenet Genome Res 129(1-3):184–189

    Article  CAS  PubMed  Google Scholar 

  53. Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Plant Cell 20(10):2559–2570. doi:10.1105/tpc.108.062166

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lysak MA, Cheung K, Kitschke M, Bureš P (2007) Ancestral chromosomal blocks are triplicated in brassiceae species with varying chromosome number and genome size. Plant Physiol 145(2):402–410. doi:10.1104/pp.107.104380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lysak MA, Fransz PF, Ali HBM, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28(6):689–697. doi:10.1046/j.1365-313x.2001.01194.x

    Article  CAS  PubMed  Google Scholar 

  56. Mandáková T, Lysak MA (2016) Painting of arabidopsis chromosomes with chromosome-specific BAC clones. In: Current protocols in plant biology. John Wiley & Sons, Inc., New York, NY. doi:10.1002/cppb.20022

    Google Scholar 

  57. Pecinka A, Schubert V, Meister A, Kreth G, Klatte M, Lysak MA, Fuchs J, Schubert I (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113(5):258–269. doi:10.1007/s00412-004-0316-2

    Article  CAS  PubMed  Google Scholar 

  58. Ohmido N, Fukui K, Kinoshita T (2010) Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). Proc Jpn Acad Ser B Phys Biol Sci 86(2):103–116. doi:10.2183/pjab.86.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jenkins G, Hasterok R (2007) BAC ‘landing’ on chromosomes of Brachypodium distachyon for comparative genome alignment. Nat Protoc 2(1):88–98. http://www.nature.com/nprot/journal/v2/n1/suppinfo/nprot.2006.490_S1.html

  60. Kim J-S, Childs KL, Islam-Faridi MN, Menz MA, Klein RR, Klein PE, Price HJ, Mullet JE, Stelly DM (2002) Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome 45(2):402–412. doi:10.1139/g01-141

    Article  CAS  PubMed  Google Scholar 

  61. Zwick MS, Hanson RE, Islam-Faridi MN, Stelly DM, Wing RA, Price HJ, McKnight TD (1997) A rapid procedure for the isolation of C0t-1 DNA from plants. Genome 40(1):138–142. doi:10.1139/g97-020

    Article  CAS  PubMed  Google Scholar 

  62. Sadder MT, Ponelies N, Born U, Weber G (2000) Physical localization of single-copy sequences on pachytene chromosomes in maize (Zea mays L.) by chromosome in situ suppression hybridization. Genome 43(6):1081–1083. doi:10.1139/gen-43-6-1081

    Article  CAS  PubMed  Google Scholar 

  63. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64(3):315–324. doi:10.1093/oxfordjournals.aob.a087847

    Article  Google Scholar 

  64. Markova M, Vyskot B (2009) New horizons of genomic in situ hybridization. Cytogenet Genome Res 126(4):368–375

    Article  CAS  PubMed  Google Scholar 

  65. Peterson DG, Lapitan NL, Stack SM (1999) Localization of single- and low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH). Genetics 152(1):427–439

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Szinay D, Chang S-B, Khrustaleva L, Peters S, Schijlen E, Bai Y, Stiekema WJ, Van Ham RCHJ, De Jong H, Klein Lankhorst RM (2008) High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J 56(4):627–637. doi:10.1111/j.1365-313X.2008.03626.x

    Article  CAS  PubMed  Google Scholar 

  67. Raap AK, Marijnen JGJ, Vrolijk J, van der Ploeg M (1986) Denaturation, renaturation, and loss of DNA during in situ hybridization procedures. Cytometry 7(3):235–242. doi:10.1002/cyto.990070303

    Article  CAS  PubMed  Google Scholar 

  68. G McNamara (2007) Fluorophore Table-Earthlink. http://home.earthlink.net/~fluorescentdyes/McNamara2007FluorophoresTable.xls. Accessed February 2, 2017

    Google Scholar 

  69. Aliyeva-Schnorr L, Beier S, Karafiátová M, Schmutzer T, Scholz U, Doležel J, Stein N, Houben A (2015) Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H. Plant J 84(2):385–394. doi:10.1111/tpj.13006

    Article  CAS  PubMed  Google Scholar 

  70. Feng C-M, Qiu Y, Van Buskirk EK, Yang EJ, Chen M (2014) Light-regulated gene repositioning in Arabidopsis. Nat Commun 5:3027. doi:10.1038/ncomms4027. http://www.nature.com/articles/ncomms4027#supplementary-information

    PubMed  PubMed Central  Google Scholar 

  71. Hesse S, Manetto A, Cassinelli V, Fuchs J, Ma L, Raddaoui N, Houben A (2016) Fluorescent labelling of in situ hybridisation probes through the copper-catalysed azide-alkyne cycloaddition reaction. Chromosome Res 24(3):299–307. doi:10.1007/s10577-016-9522-z

    Article  CAS  PubMed  Google Scholar 

  72. Khrustaleva LI, Kik C (2001) Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification. Plant J 25(6):699–707. doi:10.1046/j.1365-313x.2001.00995.x

    Article  CAS  PubMed  Google Scholar 

  73. Kirov I, Van Laere K, De Riek J, De Keyser E, Van Roy N, Khrustaleva L (2014) Anchoring linkage groups of the rosa genetic map to physical chromosomes with tyramide-FISH and EST-SNP markers. PLoS One 9(4):e95793. doi:10.1371/journal.pone.0095793

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pérez R, de Bustos A, Jouve N, Cuadrado Á (2009) Localization of Rad50, a single-copy gene, on group 5 chromosomes of wheat, using a FISH protocol employing tyramide for signal amplification (Tyr-FISH). Cytogenet Genome Res 125(4):321–328

    Article  PubMed  Google Scholar 

  75. Sanz MJ, Loarce Y, Ferrer E, Fominaya A (2012) Use of tyramide-fluorescence in situ hybridization and chromosome microdissection for ascertaining homology relationships and chromosome linkage group associations in oats. Cytogenet Genome Res 136(2):145–156

    Article  CAS  PubMed  Google Scholar 

  76. Stephens JL, Brown SE, Lapitan NLV, Knudson DL (2004) Physical mapping of barley genes using an ultrasensitive fluorescence in situ hybridization technique. Genome 47(1):179–189. doi:10.1139/g03-084

    Article  CAS  PubMed  Google Scholar 

  77. Wiegant J, Ried T, Nederlof PM, van der Ploeg M, Tanke HJ, Raap AK (1991) In situ hybridization with fluoresceinated DNA. Nucleic Acids Res 19(12):3237–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Figueroa DM, Bass HW (2010) A historical and modern perspective on plant cytogenetics. Brief Funct Genomics 9(2):95–102. doi:10.1093/bfgp/elp058

    Article  PubMed  Google Scholar 

  79. Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJM, Zabel P, de Jong JH (1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9(3):421–430. doi:10.1046/j.1365-313X.1996.09030421.x

    Article  CAS  PubMed  Google Scholar 

  80. Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41(4):566–572. doi:10.1139/g98-093

    Article  CAS  PubMed  Google Scholar 

  81. Wang K, Zhang W, Jiang Y, Zhang T (2013) Systematic application of DNA fiber-FISH technique in cotton. PLoS One 8(9):e75674. doi:10.1371/journal.pone.0075674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang J (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci 98(9):5099–5103. doi:10.1073/pnas.091110398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dong F, Miller JT, Jackson SA, Wang G-L, Ronald PC, Jiang J (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci 95(14):8135–8140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jackson SA, Cheng Z, Li Wang M, Goodman HM, Jiang J (2000) Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the brassica rapa genome. Genetics 156(2):833–838

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lilly JW, Havey MJ, Jackson SA, Jiang J (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13(2):245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nakano A, Suzuki G, Yamamoto M, Turnbull K, Rahman S, Mukai Y (2005) Rearrangements of large-insert T-DNAs in transgenic rice. Mol Genet Genomics 273(2):123–129. doi:10.1007/s00438-005-1116-y

    Article  CAS  PubMed  Google Scholar 

  87. Beliveau BJ, Apostolopoulos N, Wu C-t (2001) Visualizing genomes with oligopaint FISH probes. In: Current protocols in plant biology. John Wiley & Sons, Inc., New York, NY. doi:10.1002/0471142727.mb1423s105

    Google Scholar 

  88. Han Y, Zhang T, Thammapichai P, Weng Y, Jiang J (2015) Chromosome-specific painting in cucumis species using bulked oligonucleotides. Genetics 200(3):771–779. doi:10.1534/genetics.115.177642

    Article  PubMed  PubMed Central  Google Scholar 

  89. Murgha Y, Beliveau B, Semrau K, Schwartz D, Wu C-t, Gulari E, Rouillard J-M (2014) Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries. Biotechniques 58(6):301–307. doi:10.2144/000114298

    Google Scholar 

  90. Valárik M, Bartoš J, Kovářová P, Kubaláková M, De Jong JH, Doležel J (2004) High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J 37(6):940–950. doi:10.1111/j.1365-313X.2003.02010.x

    Article  PubMed  Google Scholar 

  91. Yu H, Chao J, Patek D, Mujumdar R, Mujumdar S, Waggoner AS (1994) Cyanine dye dUTP analogs for enzymatic labeling of DNA probes. Nucleic Acids Res 22(15):3226–3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary B, Landegren U (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265(5181):2085–2088. doi:10.1126/science.7522346

    Article  CAS  PubMed  Google Scholar 

  93. Spencer VA, Davie JR (1999) Role of covalent modifications of histones in regulating gene expression. Gene 240(1):1–12. doi:10.1016/S0378-1119(99)00405-9

    Article  CAS  PubMed  Google Scholar 

  94. Vyskot B, Araya A, Veuskens J, Negrutiu I, Mouras A (1993) DNA methylation of sex chromosomes in a dioecious plant, Melandrium album. Mol Gen Genet 239(1):219–224. doi:10.1007/bf00281621

    CAS  PubMed  Google Scholar 

  95. Siroky J, Ruffini Castiglione M, Vyskot B (1998) DNA methylation patterns of Melandrium album chromosomes. Chromosome Res 6(6):441–446

    Article  CAS  PubMed  Google Scholar 

  96. Castiglione MR, Cremonini R, Frediani M (2002) DNA methylation patterns on plant chromosomes. Caryologia 55(4):275–282. doi:10.1080/00087114.2002.10797876

    Article  Google Scholar 

  97. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci 105(7):2415–2420. doi:10.1073/pnas.0712168105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Czech Science Foundation (grant 16-08698S). We greatly thank to Dr. Alexander Oulton for English revision of this chapter. We would like to thank to Dr. Jiri Siroky and Veronika Balounova for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Vyskot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bačovský, V., Hobza, R., Vyskot, B. (2018). Technical Review: Cytogenetic Tools for Studying Mitotic Chromosomes. In: Bemer, M., Baroux, C. (eds) Plant Chromatin Dynamics. Methods in Molecular Biology, vol 1675. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7318-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7318-7_30

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7317-0

  • Online ISBN: 978-1-4939-7318-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics