Skip to main content

Cell-Type Specific Chromatin Analysis in Whole-Mount Plant Tissues by Immunostaining

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1675))

Abstract

Chromatin organization in eukaryotes is highly dynamic, playing fundamental roles in regulating diverse nuclear processes including DNA replication, transcription, and repair. Thus, the analysis of chromatin organization is of great importance for the elucidation of chromatin-mediated biological processes. Immunostaining coupled with imaging is one of the most powerful tools for chromatin analysis at the cellular level. However, in plants, it is sometimes technically challenging to apply this method due to the inaccessibility of certain cell types and/or poor penetration of the reagents into plant tissues and cells. To circumvent these limitations, we developed a highly efficient protocol enabling the analysis of chromatin modifications and nuclear organization at the single-cell level with high resolution in whole-mount plant tissues. The main procedure consists of five steps: (1) tissue fixation; (2) dissection and embedding; (3) tissue processing; (4) antibody incubation; and (5) imaging. This protocol has been simplified for the processing of multiple samples without the need for laborious tissue sectioning. Additionally, it preserves cellular morphology and chromatin organization, allowing comparative analyses of chromatin organization between different cell types or developmental stages. This protocol was successfully used for various tissues of different plant species, including Arabidopsis thaliana, Oryza sativa (rice), and Zea mays (maize). Importantly, this method is very useful to analyze poorly accessible tissues, such as female meiocytes, gametophytes, and embryos.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. She W, Grimanelli D, Rutowicz K et al (2013) Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140:4008–4019

    Article  CAS  PubMed  Google Scholar 

  2. She W, Baroux C (2015) Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis. Front Plant Sci 6:294

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tessadori F, Schulkes RK, van Driel R et al (2007) Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis. Plant J 50:848–857

    Article  CAS  PubMed  Google Scholar 

  4. Rosa S, Ntoukakis V, Ohmido N et al (2014) Cell differentiation and development in Arabidopsis are associated with changes in histone dynamics at the single-cell level. Plant Cell 26:4821–4833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Zanten M, Koini MA, Geyer R et al (2011) Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. Proc Natl Acad Sci U S A 108:20219–20224

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kolodziejek I, Koziol-Lipinska J, Waleza M et al (2007) Aspects of programmed cell death during early senescence of barley leaves: possible role of nitric oxide. Protoplasma 232:97–108

    Article  CAS  PubMed  Google Scholar 

  7. Ay N, Irmler K, Fischer A et al (2009) Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant J 58:333–346

    Article  CAS  PubMed  Google Scholar 

  8. Tessadori F, van Zanten M, Pavlova P et al (2009) Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genet 5:e1000638

    Article  PubMed  PubMed Central  Google Scholar 

  9. van Zanten M, Tessadori F, McLoughlin R et al (2010) Photoreceptors CRYPTOCHROME2 and phytochrome B control chromatin compaction in Arabidopsis. Plant Physiol 154:1686–1696

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bourbousse C, Mestiri I, Zabulon G et al (2015) Light signaling controls nuclear architecture reorganization during seedling establishment. Proc Natl Acad Sci U S A 112:E2836–E2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  12. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  13. Hübner MR, Eckersley-Maslin MA, Spector DL (2013) Chromatin organization and transcriptional regulation. Curr Opin Genet Dev 23:89–95

    Article  PubMed  Google Scholar 

  14. Rosa S, Shaw P (2013) Insights into chromatin structure and dynamics in plants. Biology 2:1378–1410

    Article  PubMed  PubMed Central  Google Scholar 

  15. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu C, Weigel D (2015) Chromatin in 3D: progress and prospects for plants. Genome Biol 16:170

    Article  PubMed  PubMed Central  Google Scholar 

  17. Friml J, Benková E, Mayer U et al (2003) Automated whole mount localisation techniques for plant seedlings. Plant J 34:115–124

    Article  CAS  PubMed  Google Scholar 

  18. Sauer M, Paciorek T, Benková E et al (2006) Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nat Protoc 1:98–103

    Article  CAS  PubMed  Google Scholar 

  19. She W, Grimanelli D, Baroux C (2014) An efficient method for quantitative, single-cell analysis of chromatin modification and nuclear architecture in whole-mount ovules in Arabidopsis. J Vis Exp 88:e51530

    Google Scholar 

  20. Escobar-Guzmán R, Rodríguez-Leal D, Vielle-Calzada JP et al (2015) Whole-mount immunolocalization to study female meiosis in Arabidopsis. Nat Protoc 10:1535–1542

    Article  PubMed  Google Scholar 

  21. Pasternak T, Tietz O, Rapp K et al (2015) Protocol: an improved and universal procedure for whole-mount immunolocalization in plants. Plant Methods 11:50

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bass HW, Marshall WF, Sedat JW et al (1997) Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137:5–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pillot M, Baroux C, Vazquez MA et al (2010) Embryo and endosperm inherit distinct chromatin and transcriptional states from the female gametes in Arabidopsis. Plant Cell 22:307–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Lucas PL, Turco GM et al (2016) Transcriptional regulation of Arabidopsis Polycomb repressive complex 2 coordinates cell type proliferation and differentiation. Plant Cell 28:2616–2631

    Article  PubMed  PubMed Central  Google Scholar 

  25. McCaw ME, Wallace JG, Albert PS et al (2016) Fast-flowering mini-maize: seed to seed in 60 days. Genetics 204:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brady J (1965) A simple technique for making very fine, durable dissecting needles by sharpening tungsten wire electrolytically. Bull World Health Organ 32:143–144

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Zürich, the Swiss National Foundation and, in part, DuPont-Pioneer. We are thankful to Christof Eichenberger, Valeria Gagliardini, Arturo Bolanos, Matthias Philipp, Anja Frey, and Peter Kopf for general lab support, and to Karl Huwiler and Christian Frey for plant care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjing She .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

She, W., Baroux, C., Grossniklaus, U. (2018). Cell-Type Specific Chromatin Analysis in Whole-Mount Plant Tissues by Immunostaining. In: Bemer, M., Baroux, C. (eds) Plant Chromatin Dynamics. Methods in Molecular Biology, vol 1675. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7318-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7318-7_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7317-0

  • Online ISBN: 978-1-4939-7318-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics