Skip to main content

A Compendium of Methods to Analyze the Spatial Organization of Plant Chromatin

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1675))

Abstract

The long linear chromosomes of eukaryotic organisms are tightly packed into the nucleus of the cell. Beyond a first organization into nucleosomes and higher-order chromatin fibers, the positioning of nuclear DNA within the three-dimensional space of the nucleus plays a critical role in genome function and gene expression. Different techniques have been developed to assess nanoscale chromatin organization, nuclear position of genomic regions or specific chromatin features and binding proteins as well as higher-order chromatin organization. Here, I present an overview of imaging and molecular techniques applied to study nuclear architecture in plants, with special attention to the related protocols published in the “Plant Chromatin Dynamics” edition from Methods in Molecular Biology.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Roudier F, Ahmed I, Bérard C et al (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sequeira-Mendes J, Aragüez I, Peiró R et al (2014) The functional topography of the Arabidopsis genome is organized in a reduced number of linear motifs of chromatin states. Plant Cell. doi:10.1105/tpc.114.124578

  3. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  CAS  PubMed  Google Scholar 

  4. Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. doi:10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Laat W, Duboule D (2013) Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502:499–506. doi:10.1038/nature12753

    Article  PubMed  CAS  Google Scholar 

  6. Lopes R, Korkmaz G, Agami R (2016) Applying CRISPR-Cas9 tools to identify and characterize transcriptional enhancers. Nat Rev Mol Cell Biol 17:597–604. doi:10.1038/nrm.2016.79

    Article  CAS  PubMed  Google Scholar 

  7. Osborne CS, Chakalova L, Brown KE et al (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36:1065–1071. doi:10.1038/ng1423

    Article  CAS  PubMed  Google Scholar 

  8. Guelen L, Pagie L, Brasset E et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951. doi:10.1038/nature06947

    Article  CAS  PubMed  Google Scholar 

  9. Pickersgill H, Kalverda B, de Wit E et al (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38:1005–1014. doi:10.1038/ng1852

    Article  CAS  PubMed  Google Scholar 

  10. Németh A, Conesa A, Santoyo-Lopez J et al (2010) Initial genomics of the human nucleolus. PLoS Genet. doi:10.1371/journal.pgen.1000889

  11. van Koningsbruggen S, Gierliński M, Schofield P et al (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21:3735–3748. doi:10.1091/mbc.E10-06-0508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pontvianne F, Carpentier M-C, Durut N et al (2016) Identification of nucleolus-associated chromatin domains reveals a role for the nucleolus in 3D organization of the A. thaliana genome. Cell Rep 16:1574–1587. doi:10.1016/j.celrep.2016.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pope BD, Ryba T, Dileep V et al (2014) Topologically associating domains are stable units of replication-timing regulation. Nature 515:402–405. doi:10.1038/nature13986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seeber A, Gasser SM (2017) Chromatin organization and dynamics in double-strand break repair. Curr Opin Genet Dev 43:9–16. doi:10.1016/j.gde.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  15. Desset S, Poulet A, Tatout C (2017) Quantitative 3D analysis of nuclear morphology and heterochromatin organization from whole mount plant tissue using nucleus. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_33

  16. Arpon J, Gaudin V, Andrey P (2017) A method for testing random spatial model on nuclear object distributions. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_29

  17. Poulet A, Duc C, Voisin M et al (2017) The LINC complex contributes to heterochromatin organisation and transcriptional gene silencing in plants. J Cell Sci 130:590–601

    Article  CAS  PubMed  Google Scholar 

  18. Poulet A, Arganda-Carreras I (2014) NucleusJ: an ImageJ plugin for quantifying 3D images of interphase nuclei. Bioinformatics 3:1144–1146

    Google Scholar 

  19. Baroux C, Schubert V (2017) Microscopy and image processing tools to analyse plant chromatin – practical considerations. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_31

  20. Poulet A, Arganda-Carreras I, Legland D et al (2015) NucleusJ: an ImageJ plugin for quantifying 3D images of interphase nuclei. Bioinformatics 31:1144–1146. doi:10.1093/bioinformatics/btu774

    Article  CAS  PubMed  Google Scholar 

  21. Fabrice TN, Cherkezyan L, Ringli C, Baroux C (2017) Transmission electron microscopy imaging to analyse chromatin density distribution at the nanoscale level. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_34

  22. Bey TD, Koini M, Fransz PF (2017) Fluorescence in situ hybridization (FISH) and immunolabeling on 3D preserved nuclei. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_27

  23. Ashenafi MS, Baroux C (2017) Automated 3D gene position analysis using a customized Imaris plugin. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_32

  24. Simon L, Probst AV (2017) High-affinity LNA/DNA mixmer probes for detection of chromosome-specific polymorphisms of 5S rDNA repeats in A. thaliana. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_28

  25. Bačovský V, Hobza R, Vyskot B (2017) Technical review: cytogenetic tools for studying mitotic chromosomes. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_30

  26. Lysak M, Fransz P, Schubert I (2006) Cytogenetic analyses of Arabidopsis. Methods Mol Biol 323:173–186. doi:10.1385/1-59745-003-0:173

    PubMed  Google Scholar 

  27. Kato A, Lamb JC, J a B (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A 101:13554–13559. doi:10.1073/pnas.0403659101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. She W, Grimanelli D, Baroux C (2014) An efficient method for quantitative, single-cell analysis of chromatin modification and nuclear architecture in whole-mount ovules in Arabidopsis. J Vis Exp:1–9. doi:10.3791/51530

  29. Howe ES, Murphy SP, Bass HW (2013) Three-dimensional acrylamide fluorescence in situ hybridization for plant cells. In: Pawlowski WP, Grelon M, Armstrong S (eds) Plant meiosis methods in protocols. Humana, Totowa, NJ, pp 53–66

    Chapter  Google Scholar 

  30. Berr A, Schubert I (2007) Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division. Genetics 176:853–863. doi:10.1534/genetics.107.073270

    Article  PubMed  PubMed Central  Google Scholar 

  31. Costa S, Shaw P (2006) Chromatin organization and cell fate switch respond to positional information in Arabidopsis. Nature 439:493–496

    Article  CAS  PubMed  Google Scholar 

  32. Bauwens S, Van Oostveldt P, Engler G, Van Montagu M (1991) Distribution of the rDNA and three classes of highly repetitive DNA in the chromatin of interphase nuclei of Arabidopsis thaliana. Chromosoma 101:41–48. doi:10.1007/BF00360685

    Article  CAS  PubMed  Google Scholar 

  33. Raissig MT, Gagliardini V, Jaenisch J et al (2013) Efficient and rapid isolation of early-stage embryos from Arabidopsis thaliana seeds. J Vis Exp 7:e50371. doi:10.3791/50371

    Google Scholar 

  34. Gernand D, Rutten T, Varshney A, et al (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. 17:2431–2438. doi:10.1105/tpc.105.034249

  35. Wegel E, Koumproglou R, Shaw P, Osbourn A (2009) Cell type-specific chromatin decondensation of a metabolic gene cluster in oats. Plant Cell 21:3926–3936. doi:10.1105/tpc.109.072124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Santos AP, Wegel E, Allen GC et al (2006) In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. Plant Methods 2:18. doi:10.1186/1746-4811-2-18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Prieto P, Moore G, Shaw P (2007) Fluorescence in situ hybridization on vibratome sections of plant tissues. Nat Protoc 2:1831–1838. doi:10.1038/nprot.2007.265

    Article  CAS  PubMed  Google Scholar 

  38. Pecinka A, Schubert V, Meister A et al (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113:258–269

    Article  CAS  PubMed  Google Scholar 

  39. Baroux C, Pecinka A, Fuchs J et al (2016) Non-random chromosome arrangement in triploid endosperm nuclei. Chromosoma 126:115–124. doi:10.1007/s00412-016-0578-5

    Article  PubMed  CAS  Google Scholar 

  40. Berr A, Pecinka A, Meister A et al (2006) Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between Arabidopsis thaliana and Arabidopsis lyrata. Plant J 48:771–783. doi:10.1111/j.1365-313X.2006.02912.x

    Article  CAS  PubMed  Google Scholar 

  41. Schubert V, Kim YM, Schubert I (2008) Arabidopsis sister chromatids often show complete alignment or separation along a 1.2-Mb euchromatic region but no cohesion “hot spots”. Chromosoma 117:261–266. doi:10.1007/s00412-007-0141-5

    Article  CAS  PubMed  Google Scholar 

  42. Sun J, Zhang Z, Zong X et al (2013) A high-resolution cucumber cytogenetic map integrated with the genome assembly. BMC Genomics 14:461. doi:10.1186/1471-2164-14-461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mandáková T, Lysak MA (2016) Chromosome preparation for cytogenetic analyses in Arabidopsis. Curr Protoc Plant Biol. John Wiley & Sons, Inc, Hoboken, NJ, pp 43–51

    Book  Google Scholar 

  44. Doležel J, Vrána J, Cápal P et al (2014) Advances in plant chromosome genomics. Biotechnol Adv 32:122–136. doi:10.1016/j.biotechadv.2013.12.011

    Article  PubMed  CAS  Google Scholar 

  45. Fransz P, Linc G, Lee C-R et al (2016) Molecular, genetic and evolutionary analysis of a paracentric inversion in Arabidopsis thaliana. Plant J. doi:10.1111/tpj.13262

  46. Mandáková T, M a L (2008) Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570. doi:10.1105/tpc.108.062166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kellogg EE a, Bennetzen JJL (2004) The evolution of nuclear genome structure in seed plants. Am J Bot 91:1709–1725. doi:10.3732/ajb.91.10.1709

    Article  CAS  PubMed  Google Scholar 

  48. Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66:18–33

    Article  CAS  PubMed  Google Scholar 

  49. Feng C, Qiu Y, Buskirk EK Van, et al (2014) Light-regulated gene repositioning in Arabidopsis. Nat Commun 5:1–9. doi:10.1038/ncomms4027

  50. She W, Baroux C, Grossniklaus U (2017) Cell-type specific chromatin analysis in whole-mount plant tissues by immunostaining. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_25

  51. Silva GS, Souza MM (2013) Genomic in situ hybridization in plants. Genet Mol Res 12:2953–2965. doi:10.4238/2013.August.12.11

    Article  CAS  PubMed  Google Scholar 

  52. Ali HBM, Lysak MA, Schubert I (2004) Genomic in situ hybridization in plants with small genomes is feasible and elucidates the chromosomal parentage in interspecific Arabidopsis hybrids. Genome 47:954–960. doi:10.1139/g04-041

    Article  CAS  PubMed  Google Scholar 

  53. Türkösi E, Cseh A, Darkó É, Molnár-láng M (2016) Addition of Manas barley chromosome arms to the hexaploid wheat genome. BMC Genet 17:871. doi:10.1186/s12863-016-0393-2

    Article  CAS  Google Scholar 

  54. Younis A, Ramzan F, Hwang YJ, Lim KB (2015) FISH and GISH: molecular cytogenetic tools and their applications in ornamental plants. Plant Cell Rep 34:1477–1488. doi:10.1007/s00299-015-1828-3

    Article  CAS  PubMed  Google Scholar 

  55. Rosa S, De Lucia F, Mylne JS et al (2013) Physical clustering of FLC alleles during polycomb-mediated epigenetic silencing in vernalization. Genes Dev 27:1845–1850. doi:10.1101/gad.221713.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matzke AJ, Watanabe K, Winden J et al (2010) High frequency, cell type-specific visualization of fluorescent-tagged genomic sites in interphase and mitotic cells of living Arabidopsis plants. Plant Methods 6:1–11

    Article  CAS  Google Scholar 

  57. Kato N, Lam E (2001) Detection of chromosomes tagged with green fluorescent protein in live Arabidopsis thaliana plants. Genome Biol 2:RESEARCH0045.

    Google Scholar 

  58. Smith S, Galinha C, Desset S et al (2015) Marker gene tethering by nucleoporins affects gene expression in plants. Nucleus 1034:00–00. doi:10.1080/19491034.2015.1126028

    Google Scholar 

  59. Pecinka A, Kato N, Meister A et al (2005) Tandem repetitive transgenes and fluorescent chromatin tags alter local interphase chromosome arrangement in Arabidopsis thaliana. J Cell Sci 118:3751–3758

    Article  CAS  PubMed  Google Scholar 

  60. Ricci MA, Manzo C, García-Parajo MF et al (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160:1145–1158. doi:10.1016/j.cell.2015.01.054

    Article  CAS  PubMed  Google Scholar 

  61. Schubert V, Weisshart K (2015) Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei. J Exp Bot 66:1687–1698. doi:10.1093/jxb/erv091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosa S (2017) Measuring dynamics of histone proteins by photobleaching in Arabidopsis roots. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_26

  63. Grob S, Cavalli G (2017) A Hitchhiker’s guide to chromosome conformation capture. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_14

  64. Weber B, Jamge S, Stam ME (2017) 3C in maize and Arabidopsis. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_15

  65. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  CAS  PubMed  Google Scholar 

  66. Louwers M, Splinter E, van Driel R et al (2009) Studying physical chromatin interactions in plants using chromosome conformation capture (3C). Nat Protoc 4:1216–1229. doi:10.1038/nprot.2009.113

    Article  CAS  PubMed  Google Scholar 

  67. Louwers M, Bader R, Haring M et al (2009) Tissue- and expression level-specific chromatin looping at maize b1 epialleles. Plant Cell 21:832–842. doi:10.1105/tpc.108.064329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sati S, Cavalli G (2016) Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 126:33–44. doi:10.1007/s00412-016-0593-6

    Article  PubMed  Google Scholar 

  69. Grob S, Schmid MW, Luedtke NW et al (2013) Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture. Genome Biol 14:R129. doi:10.1186/gb-2013-14-11-r129

    Article  PubMed  PubMed Central  Google Scholar 

  70. Moissiard G, Cokus SJ, Cary J et al (2012) MORC family ATPases required for heterochromatin condensation and gene silencing. Science 336(6087):1448–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grob S, Schmid MW, Grossniklaus U (2014) Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell 55(5):678–693. doi:10.1016/j.molcel.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  72. Feng S, Cokus SJ, Schubert V et al (2014) Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol Cell 55:694–707. doi:10.1016/j.molcel.2014.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang C, Liu C, Roqueiro D et al (2015) Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res 25:246–256. doi:10.1101/gr.170332.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Liu C, Wang C, Wang G et al (2016) Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res 26(8):1057–1068. doi:10.1101/gr.204032.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cléard F, Karch F, Maeda RK (2014) DamID as an approach to studying long-distance chromatin interactions. In: Graba Y, Rezsohazy R (eds) Hox genes – methods and protocols. Springer, New York, NY, pp 279–289

    Google Scholar 

  76. Germann S, Juul-Jensen T, Letarnec B, Gaudin V (2006) DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci. Plant J 48:153–163

    Article  CAS  PubMed  Google Scholar 

  77. Pontvianne F, Blevins T, Chandrasekhara C et al (2013) Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states. Genes Dev 27:1545–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pontvianne F, Boyer-Clavel M, Sáez-Vásquez J (2016) Fluorescence-activated nucleolus sorting in Arabidopsis. In: Németh A (ed) The nucleolus – methods and protocols Springer New York, NYs, pp 203–211

    Google Scholar 

  79. Carpentier M-C, Picart-Picolo A, Pontvianne F (2017) A method to identify nucleolus-associated chromatin domains (NADs). In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_7

  80. Heitz E (1928) Das heterochromatin der Moose. Jb Wiss Bot 69:728–818

    Google Scholar 

  81. Cremer T, Cremer C (2006) Rise, fall and resurrection of chromosome territories: a historical perspective. Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: experiments and. Eur J Histochem 50:223–272

    CAS  PubMed  Google Scholar 

  82. Voss U, Larrieu A, Wells DM (2013) From jellyfish to biosensors: the use of fluorescent proteins in plants. Int J Dev Biol 57:525–533. doi:10.1387/ijdb.130208dw

    Article  PubMed  CAS  Google Scholar 

  83. Soppe WJ, Jasencakova Z, Houben A et al (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 21:6549–6559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jasencakova Z, Soppe WJJ, Meister A et al (2003) Histone modifications in Arabidopsis-high methylation of H3 lysine 9 is dispensable for constitutive heterochromatin. Plant J 33:471–480

    Article  CAS  PubMed  Google Scholar 

  85. Fransz P, de Jong JH, Lysak M et al (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci U S A 99:14584–14589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Andrey P, Kiêu K, Kress C et al (2010) Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Comput Biol 6:e1000853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Koornneef M, Fransz P, de Jong H (2003) Cytogenetic tools for Arabidopsis thaliana. Chromosom Res 11:183–194

    Article  CAS  Google Scholar 

  88. Fransz PF, Armstrong S, De Jong JH et al (2000) Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100:367–376

    Article  CAS  PubMed  Google Scholar 

  89. Tasara T, Angerer B, Damond M et al (2003) Incorporation of reporter molecule-labeled nucleotides by DNA polymerases. II. High-density labeling of natural DNA. Nucleic Acids Res 31:2636–2646. doi:10.1093/nar/gkg371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jasencakova Z, Meister a WJ et al (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12:2087–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bowler C, Benvenuto G, Laflamme P et al (2004) Chromatin techniques for plant cells. Plant J 39:776–789

    Article  CAS  PubMed  Google Scholar 

  92. Tirichine L, Andrey P, Biot E et al (2009) 3D fluorescent in situ hybridization using Arabidopsis leaf cryosections and isolated nuclei. Plant Methods 5:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Winkler R, Perner B, Rapp A et al (2003) Labelling quality and chromosome morphology after low temperature FISH analysed by scanning far-field and near-field optical microscopy. J Microsc 209:23–33. doi:10.1046/j.1365-2818.2003.01101.x

    Article  CAS  PubMed  Google Scholar 

  94. Rosin FM, Watanabe N, Cacas JL et al (2008) Genome-wide transposon tagging reveals location-dependent effects on transcription and chromatin organization in Arabidopsis. Plant J 55:514–525

    Article  CAS  PubMed  Google Scholar 

  95. Fujimoto S, Sugano SS, Kuwata K et al (2016) Visualization of specific repetitive genomic sequences with fluorescent TALEs in Arabidopsis thaliana. J Exp Bot 67:6101–6110. doi:10.1093/jxb/erw371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Deng W, Shi X, Tjian R et al (2015) CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc Natl Acad Sci U S A 112:11870–11875. doi:10.1073/pnas.1515692112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dreissig S, Schiml S, Schindele P et al (2017) Live cell CRISPR-imaging in plants reveals dynamic telomere movements. Plant J:0–3. doi:10.1111/tpj.13601

  98. Garcia S, Kovařík A, Leitch AR, Garnatje T (2016) Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant J. doi:10.1111/tpj.13442

  99. Probst A V, Fransz PF, Paszkowski J, Mittelsten Scheid O (2003) Two means of transcriptional reactivation within heterochromatin. Plant J 33:743–749

    Article  CAS  PubMed  Google Scholar 

  100. Schubert V, Rudnik R, Schubert I (2014) Chromatin associations in Arabidopsis interphase nuclei. Front Genet 5:1–11. doi:10.3389/fgene.2014.00389

    Article  CAS  Google Scholar 

  101. Rosa S, Duncan S, Dean C (2016) Mutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repression. Nat Commun 7:13031. doi:10.1038/ncomms13031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Duncan S, Olsson TSG, Hartley M et al (2016) A method for detecting single mRNA molecules in Arabidopsis thaliana. Plant Methods 12:13. doi:10.1186/s13007-016-0114-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Chaumeil J, Augui S, Chow JC, Heard E (2008) Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation. Methods Mol Biol (Clifton, NJ) 463:297–308

    Article  CAS  Google Scholar 

  104. García-Aguilar M, Autran D (2017) Localisation of chromatin marks in Arabidopsis early embryos. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_24

  105. Fang Y, Spector DL (2005) Centromere positioning and dynamics in living Arabidopsis plants. Mol Biol Cell 16:5710–5718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rosa S, Ntoukakis V, Ohmido N et al (2014) Cell differentiation and development in Arabidopsis are associated with changes in histone dynamics at the single-cell level. Plant Cell 26:4821–4833. doi:10.1105/tpc.114.133793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ingouff M, Selles B, Michaud C, et al (2017) Live-cell analysis of DNA methylation during sexual reproduction in Arabidopsis reveals context and sex-specific dynamics controlled by noncanonical RdDM. 1–12. doi:10.1101/gad.289397.116.GENES

  108. Tariq M, Saze H, Probst A V et al (2003) Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc Natl Acad Sci U S A 100:8823–8827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mathieu O, Probst A V, Paszkowski J (2005) Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis. EMBO J 24:2783–2791. doi:10.1038/sj.emboj.7600743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mathieu O, Reinders J, Caikovski M et al (2007) Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130:851–862

    Article  CAS  PubMed  Google Scholar 

  111. Jacob Y, Feng S, LeBlanc CA et al (2009) ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat Struct Mol Biol 16:763–768. doi:10.1038/nsmb.1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ingouff M, Rademacher S, Holec S et al (2010) Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr Biol 20:2137–2143

    Article  CAS  PubMed  Google Scholar 

  113. She W, Grimanelli D, Rutowicz K et al (2013) Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140(19):4008. doi:10.1242/dev.095034

    Article  CAS  PubMed  Google Scholar 

  114. Lieberman-Aiden E, van Berkum NL, Williams L, et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289 LP-293.

    Google Scholar 

  115. Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64. doi:10.1038/nature12593

    Article  CAS  PubMed  Google Scholar 

  116. Ma W, Ay F, Lee C et al (2015) Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat Methods 12:71–78. doi:10.1038/nmeth.3205

    Article  PubMed  CAS  Google Scholar 

  117. Hsieh THS, Weiner A, Lajoie B et al (2015) Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162:108–119. doi:10.1016/j.cell.2015.05.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Choy J, Fullwood MJ (2017) Deciphering noncoding RNA and chromatin interactions: multiplex chromatin interaction analysis by paired-end tag sequencing (mChIA-PET). In: Ørom UA (ed) Enhancer RNAs - methods and protocols. Springer, New York, NY, pp 63–89. doi:10.1007/978-1-4939-4035-6_7

    Chapter  Google Scholar 

  119. Crevillén P, Sonmez C, Wu Z, Dean C (2013) A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization. EMBO J 32:140–148. doi:10.1038/emboj.2012.324

    Article  PubMed  CAS  Google Scholar 

  120. van Steensel B, Delrow J, Henikoff S (2001) Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet 27:304–308. doi:10.1038/85871

    Article  PubMed  CAS  Google Scholar 

  121. van Steensel B, Henikoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18:424–428. doi:10.1038/74487

    Article  PubMed  CAS  Google Scholar 

  122. Desvoyes B, Vergara Z, Sequeira-Mendes J et al (2017) A rapid and efficient ChIP protocol to profile chromatin binding proteins and epigenetic modifications in Arabidopsis. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_5

  123. Gendrel AV, Lippman Z, Yordan C et al (2002) Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297:1871–1873

    Article  CAS  PubMed  Google Scholar 

  124. Stroud H, Otero S, Desvoyes B et al (2012) Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc Natl Acad Sci 109:5370–5375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wollmann H, Holec S, Alden K et al (2012) Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome. PLoS Genet 8:28–31. doi:10.1371/journal.pgen.1002658

    Article  CAS  Google Scholar 

  126. Yelagandula R, Stroud H, Holec S et al (2014) The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 158:98–109. doi:10.1016/j.cell.2014.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Turck F, Roudier F, Farrona S et al (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3:e86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Veluchamy A, Jegu T, Ariel F et al (2016) LHP1 regulates H3K27me3 spreading and shapes the three-dimensional conformation of the Arabidopsis genome. PLoS One:1–25. doi:10.1371/journal.pone.0158936

  129. Zhang X, Germann S, Blus BJ et al (2007) The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol 14:869–871. doi:10.1038/nsmb1283

    Article  CAS  PubMed  Google Scholar 

  130. Wang C-JR (2013) Analyzing maize meiotic chromosomes with super-resolution structured illumination microscopy. In: Pawlowski WP, Grelon M, Armstrong S (eds) Plant meiosis – methods and protocols. Humana, Totowa, NJ, pp 67–78

    Chapter  Google Scholar 

  131. Roukos V, Misteli T (2014) Deep imaging: the next frontier in microscopy. Histochem Cell Biol 142:125–131. doi:10.1007/s00418-014-1239-5

    Article  CAS  PubMed  Google Scholar 

  132. Clément C, Vassias I, Ray-Gallet D, Almouzni G (2016) Functional characterization of histone chaperones using SNAP-tag-based imaging to assess de novo histone deposition. In: Enzymology RMBT-M (ed) Enzyme epigenetics, part A, Academic, New York, NY, pp 97–117

    Google Scholar 

  133. Mathur J, Radhamony R, Sinclair AM et al (2010) mEosFP-based green-to-red photoconvertible subcellular probes for plants. Plant Physiol 154:1573–1587. doi:10.1104/pp.110.165431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rodriguez-Granados NY, Ramirez-Prado JS, Veluchamy A et al (2016) Put your 3D glasses on: plant chromatin is on show. J Exp Bot 67(11):3205–3221. doi:10.1093/jxb/erw168

    Article  CAS  PubMed  Google Scholar 

  135. Pontes O, Li CF, Nunes PC et al (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126:79–92

    Article  CAS  PubMed  Google Scholar 

  136. Deal RB, Henikoff S (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6:56–68

    Article  CAS  PubMed  Google Scholar 

  137. Morao AK, Caillieux E, Colot V, Roudier F (2017) Cell type-specific profiling of chromatin modifications and associated proteins. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_8

  138. Rabl C (1885) Über Zellteilung. Morphol Jahrb 10:214–330

    Google Scholar 

Download references

Acknowledgments

I thank S. Desset and C. Tatout for critical reading and C. Baroux for helpful editorial suggestions. This work was supported by ANR grant ‘SINODYN’ ANR-12 ISV6 0001, the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale and the University Clermont Auvergne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline V. Probst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Probst, A.V. (2018). A Compendium of Methods to Analyze the Spatial Organization of Plant Chromatin. In: Bemer, M., Baroux, C. (eds) Plant Chromatin Dynamics. Methods in Molecular Biology, vol 1675. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7318-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7318-7_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7317-0

  • Online ISBN: 978-1-4939-7318-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics