Skip to main content

QTLepi Mapping in Arabidopsis thaliana

  • Protocol
  • First Online:
Plant Chromatin Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1675))

Abstract

While DNA sequence variation is known to be a major driver of phenotypic divergence, epigenetic variation has long been disregarded. One reason for that was the lack of suitable tools. The creation of epigenetically divergent but otherwise largely isogenic Arabidopsis populations has now alleviated some of these constraints. Epigenetic recombinant inbred line (epiRIL) populations allow for examining the effects of epigenetic variation on phenotypes. In addition, epiRILs enabled the development of epigenetic quantitative trait locus (QTLepi) mapping, an approach to identify causal epigenetic factors. Here, we describe the successive steps of QTLepi mapping in a broad sense, from the creation of epigenetically divergent populations to the identification of causal genes underlying particular phenotypes in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Alonso-Blanco C, Koornneef M (2000) Natural variation, an underexploited resource of genetic variation for plant genetics. Trends Plant Sci 5:22–29

    Article  CAS  PubMed  Google Scholar 

  2. Weigel D (2012) Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol 158:2–22. doi:10.1104/pp. 111.189845

    Article  CAS  PubMed  Google Scholar 

  3. Law J, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220. doi:10.1038/nrg2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503. doi:10.1146/annurev-arplant-050213-035728

    Article  CAS  PubMed  Google Scholar 

  5. Xu C, Tian J, Mo B (2013) siRNA-mediated DNA methylation and H3K9 dimethylation in plants. Protein Cell 4:656–663. doi:10.1007/s13238-013-3052-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Springer NM (2013) Epigenetics and crop improvement. Trends Genet 29:241–247. doi:10.1016/j.tig.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  7. Richards EJ (2011) Natural epigenetic variation in plant species: a view from the field. Curr Opin Plant Biol 14:204–209. doi:10.1016/j.pbi.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  8. O’Malley RC, Ecker JR (2012) Epiallelic variation in Arabidopsis thaliana. Cold Spring Harb Symp Quant Biol 77:135–145. doi:10.1101/sqb.2012.77.014571

    Article  PubMed  Google Scholar 

  9. Weigel D, Colot V (2012) Epialleles in plant evolution. Genome Biol 13:249. doi:10.1186/gb-2012-13-10-249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Finer S, Holland ML, Nanty L, Rakyan VK (2011) Review article the hunt for the epiallele. Environ Mol Mutagen 52(1):1–11. doi:10.1002/em.20590

    Article  CAS  PubMed  Google Scholar 

  11. Stam M, Belele C, Dorweiler JE, Chandler VL (2002) Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev 16:1906–1918. doi:10.1101/gad.1006702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bender J, Fink GR (1995) Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83:725–734

    Article  CAS  PubMed  Google Scholar 

  13. Henderson IR, Jacobsen SE (2008) Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev 22:1597–1606. doi:10.1101/gad.1667808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quadrana L, Almeida J, Asís R et al (2014) Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun 5:3027. doi:10.1038/ncomms5027

    Article  CAS  PubMed  Google Scholar 

  15. Soppe WJ, Jacobsen SE, Alonso-Blanco C et al (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6:791–802

    Article  CAS  PubMed  Google Scholar 

  16. Hövel I, Pearson NA, Stam M (2015) Cis-acting determinants of paramutation. Semin Cell Dev Biol. doi:10.1016/j.semcdb.2015.08.012

  17. Greaves IK, Groszmann M, Ying H et al (2012) Trans chromosomal methylation in Arabidopsis hybrids. Proc Natl Acad Sci U S A 109:3570–3575. doi:10.1073/pnas.1201043109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marí-Ordóñez A, Marchais A, Etcheverry M et al (2013) Reconstructing de novo silencing of an active plant retrotransposon. Nat Genet 45:1029–1039. doi:10.1038/ng.2703

    Article  PubMed  Google Scholar 

  19. Reinders J, Wulff BBH, Mirouze M et al (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 23:939–950. doi:10.1101/gad.524609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johannes F, Porcher E, Teixeira FK et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. doi:10.1371/journal.pgen.1000530

  21. Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci U S A 93:8449–8454. doi:10.1073/pnas.93.16.8449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mathieu O, Reinders J, Čaikovski M et al (2007) Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130:851–862. doi:10.1016/j.cell.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  23. Kakutani T, Jeddeloh J, Richards EJ (1995) Characterization of an Arabidopsis thaliana DNA hypomethylation mutant. Nucleic Acids Res 23:130–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kakutani T, Jeddeloh JA, Flowers SK et al (1996) Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci U S A 93:12406–12411. doi:10.1073/pnas.93.22.12406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roux F, Colomé-Tatché M, Edelist C et al (2011) Genome-wide epigenetic perturbation jump-starts patterns of heritable variation found in nature. Genetics 188:1015–1017. doi:10.1534/genetics.111.128744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Colomé-Tatché M, Cortijo S, Wardenaar R et al (2012) Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation. Proc Natl Acad Sci 109:16240–16245

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cortijo S, Wardenaar R, Colomé-Tatché M et al (2014) Mapping the epigenetic basis of complex traits. Science 343:1145–1148. doi:10.1126/science.1248127

    Article  CAS  PubMed  Google Scholar 

  28. Massonnet C, Vile D, Fabre J et al (2010) Probing the reproducibility of leaf growth and molecular phenotypes: a comparison of three Arabidopsis accessions cultivated in ten laboratories. Plant Physiol 152:2142–2157. doi:10.1104/pp.109.148338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Y-R, Sheng Y, Zhong S (2017) Profiling DNA methylation using bisulfite sequencing (BS-Seq). In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_2

    Google Scholar 

  30. Edelmann S, Scholten S (2017) Bisulphite sequencing using small DNA amounts. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_3

    Google Scholar 

  31. Kishore K, Pelizzola M (2017) Identification of differentially methylated regions in the Arabidopsis thaliana genome. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY. doi:10.1007/978-1-4939-7318-7_4

    Google Scholar 

  32. Paterson AH, Lander ES, Hewitt JD et al (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726. doi:10.1038/335721a0

    Article  CAS  PubMed  Google Scholar 

  33. van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93:343–349. doi:10.1017/S0016672311000279

    Article  Google Scholar 

  34. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zilberman D, Gehring M, Tran RK et al (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69. doi:10.1038/ng1929

    Article  CAS  PubMed  Google Scholar 

  37. Takuno S, Gaut BS (2012) Body-methylated genes in arabidopsis thaliana are functionally important and evolve slowly. Mol Biol Evol 29:219–227. doi:10.1093/molbev/msr188

    Article  CAS  PubMed  Google Scholar 

  38. Dubin MJ, Zhang P, Meng D et al (2015) DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. elife 4:e05255. doi:10.7554/eLife.05255

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rajeevkumar S, Anunanthini P, Sathishkumar R (2015) Epigenetic silencing in transgenic plants. Front Plant Sci 6:693. doi:10.3389/fpls.2015.00693

    Article  PubMed  PubMed Central  Google Scholar 

  40. McGinnis KM (2010) RNAi for functional genomics in plants. Brief Funct Genomics 9:111–117. doi:10.1093/bfgp/elp052

    Article  CAS  PubMed  Google Scholar 

  41. Kungulovski G, Jeltsch A (2015) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32:101–113. doi:10.1016/j.tig.2015.12.001

    Article  PubMed  Google Scholar 

  42. Kooke R, Johannes F, Wardenaar R et al (2015) Epigenetic basis of morphological variation and phenotypic plasticity in Arabidopsis thaliana. Plant Cell 27:337–348. doi:10.1105/tpc.114.133025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dapp M, Reinders J, Bédiée A et al (2015) Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids. Nat Plants 1:15092. doi:10.1038/nplants.2015.92

    Article  CAS  PubMed  Google Scholar 

  44. Hauben M, Haesendonckx B, Standaert E et al (2009) Energy use efficiency is characterized by an epigenetic component that can be directed. Proc Natl Acad Sci U S A 106:20109–20114. doi:10.1073/pnas.0908755106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Verkest A, Byzova M, Martens C et al (2015) Selection for improved energy use efficiency and drought tolerance in canola results in distinct transcriptome and epigenome changes. Plant Physiol. doi:10.1104/pp.15.00155

  46. Rieseberg LH, Archer M, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity (Edinb) 83(Pt 4):363–372. doi:10.1038/sj.hdy.6886170

    Article  Google Scholar 

  47. Meyer RC, Toerjek O, Becher M, Altmann T (2004) Heterosis of biomass production in Arabidopsis. establishment during early development. Plant Physiol 134:1813–1823. doi:10.1104/pp.103.033001.hybrid

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

K.L. was supported by the Centre for Improving Plant Yield (CIPY), which is part of the Netherlands Genomics Initiative and the Netherlands Organization for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost J. B. Keurentjes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lauss, K., Keurentjes, J.J.B. (2018). QTLepi Mapping in Arabidopsis thaliana . In: Bemer, M., Baroux, C. (eds) Plant Chromatin Dynamics. Methods in Molecular Biology, vol 1675. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7318-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7318-7_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7317-0

  • Online ISBN: 978-1-4939-7318-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics