Skip to main content

3C in Maize and Arabidopsis

  • Protocol
  • First Online:
Plant Chromatin Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1675))

Abstract

With Chromosome Conformation Capture (3C), the relative interaction frequency of one chromosomal fragment with another can be determined. The technique is especially suited for unraveling the 3D organization of specific loci when focusing on aspects such as enhancer–promoter interactions or other topological conformations of the genome. 3C has been extensively used in animal systems, among others providing insight into gene regulation by distant cis-regulatory elements. In recent years, the 3C technique has been applied in plant research. However, the complexity of plant tissues prevents direct application of existing protocols from animals. Here, we describe an adapted protocol suitable for plant tissues, especially Arabidopsis thaliana and Zea mays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Heitz E (1928) Das heterochromatin der moose. Jahrb Wiss Bot 69:762–818

    Google Scholar 

  2. Manuelidis L (1990) A view of interphase chromosomes. Science 250:1533–1540. doi:10.1126/science.2274784

    Article  CAS  PubMed  Google Scholar 

  3. Gorkin DU, Leung D, Ren B (2014) The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14:762–775. doi:10.1016/j.stem.2014.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sakabe NJ, Savic D, Nobrega MA (2012) Transcriptional enhancers in development and disease. Genome Biol 13:238. doi:10.1186/gb-2012-13-1-238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kolovos P, Knoch TA, Grosveld FG, Cook PR, Papantonis A (2012) Enhancers and silencers: an integrated and simple model for their function. Epigenetics Chromatin 5:1. doi:10.1186/1756-8935-5-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Wit E, de Laat W (2012) A decade of 3C technologies: insights into nuclear organization. Genes Dev 26:11–24. doi:10.1101/gad.179804.111

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311. doi:10.1126/science.1067799

    Article  CAS  PubMed  Google Scholar 

  8. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10:1453–1465

    Article  CAS  PubMed  Google Scholar 

  9. Vernimmen D, Gobbi MD, Sloane-Stanley JA, Wood WG, Higgs DR (2007) Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J 26:2041–2051. doi:10.1038/sj.emboj.7601654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Comet I, Schuettengruber B, Sexton T, Cavalli G (2011) A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber. Proc Natl Acad Sci 108:2294–2299. doi:10.1073/pnas.1002059108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, Kanduri C, Lezcano M, Singh Sandhu K, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341–1347. doi:10.1038/ng1891

    Article  CAS  PubMed  Google Scholar 

  12. Grob S, Schmid MW, Luedtke NW, Wicker T, Grossniklaus U (2013) Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture. Genome Biol 14:R129. doi:10.1186/gb-2013-14-11-r129

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–385. doi:10.1038/nature11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293. doi:10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Louwers M, Splinter E, van Driel R, de Laat W, Stam M (2009) Studying physical chromatin interactions in plants using Chromosome Conformation Capture (3C). Nat Protoc 4:1216–1229. doi:10.1038/nprot.2009.113

    Article  CAS  PubMed  Google Scholar 

  16. Hövel I, Louwers M, Stam M (2012) 3C technologies in plants. Methods 58:204–211. doi:10.1016/j.ymeth.2012.06.010

    Article  PubMed  Google Scholar 

  17. Palstra R-J, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W (2003) The β-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35:190–194. doi:10.1038/ng1244

    Article  CAS  PubMed  Google Scholar 

  18. Stadhouders R, Kolovos P, Brouwer R, Zuin J, van den Heuvel A, Kockx C, Palstra R-J, Wendt KS, Grosveld F, van Ijcken W, Soler E (2013) Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions. Nat Protoc 8:509–524. doi:10.1038/nprot.2013.018

    Article  CAS  PubMed  Google Scholar 

  19. Louwers M, Bader R, Haring M, van Driel R, de Laat W, Stam M (2009) Tissue- and expression level-specific chromatin looping at Maize b1 Epialleles. Plant Cell 21:832–842. doi:10.1105/tpc.108.064329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Crevillén P, Sonmez C, Wu Z, Dean C (2013) A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization. EMBO J 32:140–148. doi:10.1038/emboj.2012.324

    Article  PubMed  Google Scholar 

  21. Kang H, Wiedmer A, Yuan Y, Robertson E, Lieberman PM (2011) Coordination of KSHV latent and lytic gene control by CTCF-cohesin mediated chromosome conformation. PLoS Pathog 7:e1002140. doi:10.1371/journal.ppat.1002140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kyrchanova O, Toshchakov S, Parshikov A, Georgiev P (2007) Study of the functional interaction between Mcp insulators from the Drosophila bithorax complex: effects of insulator pairing on enhancer-promoter communication. Mol Cell Biol 27:3035–3043. doi:10.1128/MCB.02203-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao S, Kumimoto RW, Gnesutta N, Calogero AM, Mantovani R, Holt BF (2014) A distal CCAAT/NUCLEAR FACTOR Y complex promotes chromatin looping at the FLOWERING LOCUS T promoter and regulates the timing of flowering in Arabidopsis. Plant Cell 26(3):1009–1017. doi:10.1105/tpc.113.120352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jégu T, Domenichini S, Blein T, Ariel F, Christ A, Kim S-K, Crespi M, Boutet-Mercey S, Mouille G, Bourge M, Hirt H, Bergounioux C, Raynaud C, Benhamed M (2015) A SWI/SNF chromatin remodelling protein controls cytokinin production through the regulation of chromatin architecture. PLoS One 10:e0138276. doi:10.1371/journal.pone.0138276

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hagège H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, de Laat W, Forné T (2007) Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2:1722–1733. doi:10.1038/nprot.2007.243

    Article  PubMed  Google Scholar 

  26. Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, Wingett SW, Andrews S, Grey W, Ewels PA, Herman B, Happe S, Higgs A, LeProust E, Follows GA, Fraser P, Luscombe NM, Osborne CS (2015) Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 47:598–606. doi:10.1038/ng.3286

    Article  CAS  PubMed  Google Scholar 

  27. Deal RB, Henikoff S (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6:56–68. doi:10.1038/nprot.2010.175

    Article  CAS  PubMed  Google Scholar 

  28. Wang D, Deal RB (2015) Epigenome profiling of specific plant cell types using a streamlined INTACT protocol and ChIP-seq. Methods Mol Biol 1284:3–25. doi: 10.1007/978-1-4939-2444-8_1

    Google Scholar 

  29. Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez-Gonzalez A, Delhomme N, Ghavi-Helm Y, Wilczyński B, Riddell A, Furlong EEM (2012) Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 44:148–156. doi:10.1038/ng.1064

    Article  CAS  PubMed  Google Scholar 

  30. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh C-T, Emrich SJ, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia J-M, Deragon J-M, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. doi:10.1126/science.1178534

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the European Commission Seventh Framework-People-2012-ITN Project EpiTRAITS, GA-316965 (Epigenetic regulation of economically important plant traits) for Blaise Weber and Suraj Jamge. We thank Iris Hövel for her advice on 3C experiments on plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maike Stam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Weber, B., Jamge, S., Stam, M. (2018). 3C in Maize and Arabidopsis. In: Bemer, M., Baroux, C. (eds) Plant Chromatin Dynamics. Methods in Molecular Biology, vol 1675. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7318-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7318-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7317-0

  • Online ISBN: 978-1-4939-7318-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics