Skip to main content

Agrobacterium- and Biolistic-Mediated Transformation of Maize B104 Inbred

  • Protocol
  • First Online:
Maize

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1676))

Abstract

Genetic transformation of maize inbred genotypes remains non-routine for many laboratories due to variations in cell competency to induce embryogenic callus, as well as the cell’s ability to receive and incorporate transgenes into the genome. This chapter describes two transformation protocols using Agrobacterium- and biolistic-mediated methods for gene delivery. Immature zygotic embryos of maize inbred B104, excised from ears harvested 10–14 days post pollination, are used as starting explant material. Disarmed Agrobacterium strains harboring standard binary vectors and the biolistic gun system Bio-Rad PDS-1000/He are used as gene delivery systems. The herbicide resistant bar gene and selection agent bialaphos are used for identifying putative transgenic type I callus events. Using the step-by-step protocols described here, average transformation frequencies (number of bialaphos resistant T0 callus events per 100 explants infected or bombarded) of 4% and 8% can be achieved using the Agrobacterium- and biolistic-mediated methods, respectively. An estimated duration of 16–21 weeks is needed using either protocol from the start of transformation experiments to obtaining putative transgenic plantlets with established roots. In addition to laboratory in vitro procedures, detailed greenhouse protocols for producing immature ears as transformation starting material and caring for transgenic plants for seed production are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennetzen JL, Hake S (2009) Handbook of maize genetics and genomics. Springer, New York, NY, 812 p

    Book  Google Scholar 

  2. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler GE, Doebley J (2002) A single domestication for maize shown by multi-locus microsatellite genotyping. Proc Natl Acad Sci U S A 99:6080–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES (2002) Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci U S A 99(20):12959–12962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Strable J, Scanlon MJ (2009) Maize (Zea mays): a model organism for basic and applied research in plant biology. Cold Spring Harb Protoc 4(10):1–10

    Google Scholar 

  5. Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In: Kole C et al (eds) Transgenic crop plants. Springer, Berlin, pp 67–132

    Chapter  Google Scholar 

  6. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63(10):3523–3543

    Article  CAS  PubMed  Google Scholar 

  7. Nogoy FM, Song JY, Ouk S, Rahimi S, Kwon SW, Kang KK, Cho YG (2016) Current applicable DNA markers for Marker Assisted Breeding in abiotic and biotic stress tolerance in rice (Oryza sativa). Plant Breed Biotechnol 4:271–284

    Article  Google Scholar 

  8. James C (2014) Global status of commercialized transgenic crops: 2000. ISAAA Briefs No. 21. ISAAA, Ithaca, NY

    Google Scholar 

  9. Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffman N (1984) Inheritance of functional genes in plants. Science 223:496–498

    Article  CAS  PubMed  Google Scholar 

  10. Frame BR, Shou H, Chikwamba RK, Zhang ZI, Xiang CI, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Frame BR, McMurray JM, Fonger TM, Main ML, Taylor KW, Torney FJ, Paz M, Wang K (2006) Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep 25:1024–1034

    Article  CAS  PubMed  Google Scholar 

  12. Ishida Y, Saito H, Hiei Y, Komari T (2003) Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Plant Biotechnol 20:57–66

    Article  CAS  Google Scholar 

  13. Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M-J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer PM, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z-Y, Xu D, Jones T, Gordon-Kamm W (2016) Morphogenic regulators Baby boom and Wuschel improve monocot rransformation. Plant Cell 28(9):1998–2015

    Article  CAS  PubMed Central  Google Scholar 

  14. Fromm M, Morrish F, Armstrong C, Williams R, Thomas J, Klein T (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology (NY) 8:833–839

    CAS  Google Scholar 

  15. Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien J, Chambers SA, Whitney J, Adams R, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Christou P, Ford TL, Kofron M (1991) Genotype independent stable transformation of rice (Oryza sativa) plants. Biotechnology 9:957–962

    Article  Google Scholar 

  17. Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P et al (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15(3):305–327

    Article  Google Scholar 

  18. Chen L, Auh CK, Dowling P, Bell J, Chen F, Hopkins A, Dixon RA, Wang ZY (2003) Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol J 1:437–449

    Article  CAS  PubMed  Google Scholar 

  19. Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    Article  CAS  PubMed  Google Scholar 

  20. Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2(3):409–416

    Article  CAS  Google Scholar 

  21. Chawla R, Ariza-Nieto M, Wilson AJ, Moore SK, Srivastava V (2006) Transgene expression produced by biolistic-mediated, site-specific gene integration is consistently inherited by the subsequent generations. Plant Biotechnol J 4:209–218

    Article  CAS  PubMed  Google Scholar 

  22. Fu XD, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D et al (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9:11–19

    Article  CAS  PubMed  Google Scholar 

  23. Lowe K, Prakash NS, Way M, Mann MT, Spencer TM, Boddupalli RS (2009) Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res 18:831–840

    Article  CAS  PubMed  Google Scholar 

  24. Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, Gu W, Chen Z, Chilton M-D (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5:379

    Article  PubMed  PubMed Central  Google Scholar 

  25. Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  26. Ohta S, Ishida Y, Usami S (2004) Expression of cold-tolerant pyruvate, orthophosphate dikinase cDNA, and heterotetramer formation in transgenic maize plants. Transgenic Res 13:475–485

    Article  CAS  PubMed  Google Scholar 

  27. Frame BR, Zhang H, Cocciolone SM, Sidorenko LV, Dietrich CR, Pegg SE, Zhen S, Schnable PS, Wang K (2000) Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev Biol Plant 36:21–29

    Article  Google Scholar 

  28. Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2:1614–1621

    Article  CAS  PubMed  Google Scholar 

  29. Zhao ZY, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Shroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    Article  CAS  Google Scholar 

  30. Feher A (2008) The initiation phase of somatic embryogenesis: what we know and what we don’t. Acta Biol Szeged 52:53–56

    Google Scholar 

  31. Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57

    Article  CAS  Google Scholar 

  32. Salvo SAGD, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF (2014) Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS One 9(10):e111407

    Article  PubMed  PubMed Central  Google Scholar 

  33. Armstrong CL, Green CE, Phillips RL (1991) Development and availability of germplasm with high Type II culture formation response. Maize Genet Coop Newsl 65:92–93

    Google Scholar 

  34. Hallauer R, Lamkey KR, White PR (1997) Registration of five inbred lines of maize: B102, B104, B104, B105, and B106. Crop Sci 37:1405–1406

    Article  Google Scholar 

  35. Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  37. Frame B, Main M, Schick R, Wang K (2011) Genetic transformation using maize immature zygotic embryos. In: Yeung E, Thorpe TA (eds) Plant embryo culture: methods and protocols. Springer Science and Business Media, New York, NY, pp 327–341

    Chapter  Google Scholar 

  38. Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paz M, Shou H, Guo Z, Zhang Z, Banerjee A, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179

    Article  CAS  Google Scholar 

  40. Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

  41. White J, Chang S, Bibb MJ, Bibb MJ (1990) A cassette containing the bar gene of Streptomyces hygroscopicus: a selectable marker for plant transformation. Nucleic Acids Res 18:1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  CAS  PubMed  Google Scholar 

  43. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  44. Carvalho CHS, Bohorova N, Bordallo PN, Abreu LL, Valicente FH, Bressan W, Paiva E (1997) Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep 17:73–76

    Article  CAS  Google Scholar 

  45. An G, Ebert P, Mitra A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic, Dordrecht, Boston, pp 1–19

    Google Scholar 

  46. Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 164:207–214

    Article  CAS  PubMed  Google Scholar 

  47. McCain JW, Kamo KK, Hodges TK (1988) Characterization of somatic embryo development and plant regeneration from friable maize callus cultures. Bot Gaz 149:16–20

    Article  Google Scholar 

  48. Oltmanns H, Frame B, Lee LY, Johnson S, Li B, Wang K, Gelvin SB (2010) Generation of “backbone” free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome. Plant Physiol 152:1158–1166

    Article  CAS  PubMed  Google Scholar 

  49. Whipker BE, Cavins TJ, Fonteno WC (2001) 1, 2, 3’s of PourThru. North Carolina State University Floriculture Research, January 2001. www.ces.ncsu.edu/floriculture/

Download references

Acknowledgments

The authors wish to thank Marcy Main, Haleigh Summers, Sarah Salmon, Stephanie Widener, Aaron Brand, and Katey Warnberg for their contributions to this work. This project was partially supported by the USDA National Institute of Food and Agriculture, Hatch project number # IOW05162, and by State of Iowa funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Raji, J.A., Frame, B., Little, D., Santoso, T.J., Wang, K. (2018). Agrobacterium- and Biolistic-Mediated Transformation of Maize B104 Inbred. In: Lagrimini, L. (eds) Maize. Methods in Molecular Biology, vol 1676. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7315-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7315-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7314-9

  • Online ISBN: 978-1-4939-7315-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics