Skip to main content

Strategies to Suspension Serum-Free Adaptation of Mammalian Cell Lines for Recombinant Glycoprotein Production

  • Protocol
  • First Online:
Recombinant Glycoprotein Production

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1674))

Abstract

Serum-free suspension cultures are preferably required for recombinant protein production due to its readiness in upstream/downstream processing and scale-up, therefore increasing process productivity and competitiveness. This type of culture replaces traditional cell culturing as the presence of animal-derived components may introduce lot-a-lot variability and adventitious pathogens to the process. However, adapting cells to serum-free conditions is challenging, time-consuming, and cell line and medium dependent. In this chapter, we present different approaches that can be used to adapt mammalian cell lines from an anchorage-dependent serum supplemented culture to a suspension serum-free culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodrigues ME, Costa AR, Henriques M et al (2013) Advances and drawbacks of the adaptation to serum-free culture of CHO-K1 cells for monoclonal antibody production. Appl Biochem Biotechnol 169:1279–1291

    Article  CAS  PubMed  Google Scholar 

  2. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  PubMed  Google Scholar 

  3. Grillberger L, Kreil TR, Nasr S, Reiter M (2009) Emerging trends in plasma-free manufacturing of recombinant protein therapeutics expressed in mammalian cells. Biotechnol J 4:186–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnson T (2006) Promises and pitfalls of cell line adaptation. BioProcess Int 3:S52–S56

    Google Scholar 

  5. Costa AR, Withers J, Rodrigues ME et al (2013) The impact of cell adaptation to serum-free conditions on the glycosylation profile of a monoclonal antibody produced by Chinese hamster ovary cells. New Biotechnol 30:563–572

    Article  CAS  Google Scholar 

  6. Gstraunthaler G (2003) Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX 20:275–281

    PubMed  Google Scholar 

  7. van der Valk J, Brunner D, De Smet K et al (2010) Optimization of chemically defined cell culture media--replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 24:1053–1063

    Article  PubMed  Google Scholar 

  8. van der Valk J, Mellor D, Brands R et al (2004) The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture. Toxicol In Vitro 18:1–12

    Article  PubMed  Google Scholar 

  9. Chico E, Rodríguez G, Figueredo A (2008) Biorreatores para Células Animais. In: Moraes Â, Augusto E, Castilho L (eds) Tecnol. Cultiv. Células Animais Biofármacos a Ter. Gênica, 1st edn. Roca, Barcelona, Spain, p 528

    Google Scholar 

  10. Freshney IR (2015) Culture of animal cells: a manual of basic technique and specialized applications. In: Culture of animal cells, 6th edn. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp i–xxxi

    Google Scholar 

  11. Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30:1158–1170

    Article  CAS  PubMed  Google Scholar 

  12. Costa A, Rodrigues M, Henriques M et al (2011) Strategies for adaptation of mAb-producing CHO cells to serum-free medium. BMC Proc 5:P112

    Article  PubMed  PubMed Central  Google Scholar 

  13. do Amaral RL, de Sousa Bomfim A, de Abreu-Neto MS et al (2016) Approaches for recombinant human factor IX production in serum-free suspension cultures. Biotechnol Lett 38:385–394

    Article  PubMed  Google Scholar 

  14. Biaggio RT, Abreu-Neto MS, Covas DT, Swiech K (2015) Serum-free suspension culturing of human cells: adaptation, growth, and cryopreservation. Bioprocess Biosyst Eng 38(8):1495–1507

    Article  CAS  PubMed  Google Scholar 

  15. González Hernández Y, Fischer RW (2007) Serum-free culturing of mammalian cells--adaptation to and cryopreservation in fully defined media. ALTEX 24:110–116

    Article  PubMed  Google Scholar 

  16. Jaluria P, Konstantopoulos K, Betenbaugh M, Shiloach J (2008) Egr1 and Gas6 facilitate the adaptation of HEK-293 cells to serum-free media by conferring enhanced viability and higher growth rates. Biotechnol Bioeng 99:1443–1452

    Article  CAS  PubMed  Google Scholar 

  17. Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev 28:147–175

    Article  CAS  PubMed  Google Scholar 

  18. Côté J, Garnier A, Massie B, Kamen A (1998) Serum-free production of recombinant proteins and adenoviral vectors by 293SF-3F6 cells. Biotechnol Bioeng 59:567–575

    Article  PubMed  Google Scholar 

  19. Cho MS, Yee H, Chan S (2002) Establishment of a human somatic hybrid cell line for recombinant protein production. J Biomed Sci 9:631–638

    Article  CAS  PubMed  Google Scholar 

  20. Schiedner G, Hertel S, Bialek C et al (2008) Efficient and reproducible generation of high-expressing, stable human cell lines without need for antibiotic selection. BMC Biotechnol 8:13

    Article  PubMed  PubMed Central  Google Scholar 

  21. Perrin P, Madhusudana S, Gontier-Jallet C et al (1995) An experimental rabies vaccine produced with a new BHK-21 suspension cell culture process: use of serum-free medium and perfusion-reactor system. Vaccine 13:1244–1250

    Article  CAS  PubMed  Google Scholar 

  22. Haldankar R, Kopchick JJ, Ridgway D (1999) Stable production of a human growth hormone antagonist from CHO cells adapted to serum-free suspension culture. Biotechnol Prog 15:336–346

    Article  CAS  PubMed  Google Scholar 

  23. Pau MG, Ophorst C, Koldijk MH et al (2001) The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines. Vaccine 19:2716–2721

    Article  CAS  PubMed  Google Scholar 

  24. Corning (2012) Adaptation of cell cultures to a serum-free medium - SFM adaptation protocol. In: Invitrogen. http://cellgro.com/media/upload/file/techinfosheets/new/Adaptation of Cell Cultures to a Serum-free Medium.pdf. Accessed 9 Jan 2017

Download references

Acknowledgment

This work was supported by FAPESP grants 2012/04629-8 and 2012/02109-7 and CAPES scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamilla Swiech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Caron, A.L., Biaggio, R.T., Swiech, K. (2018). Strategies to Suspension Serum-Free Adaptation of Mammalian Cell Lines for Recombinant Glycoprotein Production. In: Picanço-Castro, V., Swiech, K. (eds) Recombinant Glycoprotein Production. Methods in Molecular Biology, vol 1674. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7312-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7312-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7311-8

  • Online ISBN: 978-1-4939-7312-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics