Skip to main content

Expression of Glycosylated Proteins in Bacterial System and Purification by Affinity Chromatography

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1674))

Abstract

The bacterial expression of glycoproteins has experienced significant progress in recent years, particularly in regard to the production of conjugate vaccines against pathogens. In this case, a protein carrier conjugated with glycosides is used to produce intense stimulation of the immune system. Glycoconjugate vaccines account for 35% of the global vaccine market, and consequently, several biotechnological companies have developed products for the purification of glycosylated proteins to attain homogeneity. In this chapter we present a general process for glycoprotein production in Escherichia coli and a practice method for purification of glycosylated proteins, using affinity chromatography.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Valderrama-Rincon JD, Fisher AC, Merritt JH et al (2012) An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat Chem Biol 8:434–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baker JL, Çelik E, DeLisa MP (2013) Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation. Trends Biotechnol 31:313–323

    Article  CAS  PubMed  Google Scholar 

  3. Li H, Debowski AW, Liao T et al (2017) Understanding protein glycosylation pathways in bacteria. Future Microbiol 12:59–72

    Article  CAS  PubMed  Google Scholar 

  4. Feldman MF, Wacker M, Hernandez M et al (2005) Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci 102:3016–3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nita-Lazar M, Wacker M, Schegg B et al (2005) The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 15:361–367

    Article  CAS  PubMed  Google Scholar 

  6. Wacker M, Linton D, Hitchen PG et al (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298:1790–1793

    Article  CAS  PubMed  Google Scholar 

  7. Ravenscroft N, Haeuptle MA, Kowarik M et al (2016) Purification and characterization of a Shigella conjugate vaccine, produced by glycoengineering Escherichia coli. Glycobiology 26:51–62

    CAS  PubMed  Google Scholar 

  8. Fisher AC, Haitjema CH, Guarino C et al (2011) Production of secretory and extracellular N-linked glycoproteins in Escherichia coli. Appl Environ Microbiol 77:871–881

    Article  CAS  PubMed  Google Scholar 

  9. Ihssen J, Kowarik M, Dilettoso S et al (2010) Production of glycoprotein vaccines in Escherichia coli. Microb Cell Fact 9:61

    Article  PubMed  PubMed Central  Google Scholar 

  10. Garcia-Quintanilla F, Iwashkiw JA, Price NL et al (2014) Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery. Front Microbiol 5:381

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wacker M, Wang L, Kowarik M et al (2014) Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli. J Infect Dis 209:1551–1561

    Article  CAS  PubMed  Google Scholar 

  12. Lam SK, Ng TB (2011) Lectins: production and practical applications. Appl Microbiol Biotechnol 89:45–55

    Article  CAS  PubMed  Google Scholar 

  13. Friedman AM, Long SR, Brown SE et al (1982) Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene 18:289–296

    Article  CAS  PubMed  Google Scholar 

  14. Simonian MH (2002) Spectrophotometric determination of protein concentration. Curr Protoc Cell Biol Appendix 3:Appendix 3B

    PubMed  Google Scholar 

  15. Kruger NJ (2002) The Bradford method for protein quantitation. In: Protein protoc handbook. Humana Press, New Jersey, pp 15–22

    Chapter  Google Scholar 

  16. Pohleven J, Trukelj B, Kos J (2012) Affinity chromatography of lectins. In: Affinity chromatography. InTech, Rijeka, Croatia, pp 49–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Breyer, C.A., de Oliveira, M.A., Pessoa, A. (2018). Expression of Glycosylated Proteins in Bacterial System and Purification by Affinity Chromatography. In: Picanço-Castro, V., Swiech, K. (eds) Recombinant Glycoprotein Production. Methods in Molecular Biology, vol 1674. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7312-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7312-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7311-8

  • Online ISBN: 978-1-4939-7312-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics