Skip to main content

Quantitative Analysis of DNA Damage Signaling Responses to Chemical and Genetic Perturbations

  • Protocol
  • First Online:
Genome Instability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1672))

Abstract

Phosphorylation-mediated signaling is essential for maintenance of the eukaryotic genome. The evolutionarily conserved kinases ATR and ATM sense specific DNA structures generated upon DNA damage or replication stress and mediate an extensive signaling network that impinges upon most nuclear processes. ATR/ATM signaling is highly regulated and can function in a context-dependent manner. Thus, the ability to quantitatively monitor most, if not all, signaling events in this network is essential to investigate the mechanisms by which kinases maintain genome integrity. Here we describe a method for the Quantitative Mass-Spectrometry Analysis of Phospho-Substrates (QMAPS) to monitor in vivo DNA damage signaling in a systematic, unbiased, and quantitative manner. Using the model organism Saccharomyces cerevisiae, we provide an example for how QMAPS can be applied to define the effect of genotoxins, illustrating the importance of quantitatively monitoring multiple kinase substrates to comprehensively understanding kinase action. QMAPS can be easily extended to other organisms or signaling pathways where kinases can be deleted or inhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Awasthi P, Foiani M, Kumar A (2015) ATM and ATR signaling at a glance. J Cell Sci 128(23):4255–4262

    Article  CAS  PubMed  Google Scholar 

  2. Cimprich KA et al (1996) cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc Natl Acad Sci U S A 93(7):2850–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanchez Y et al (1999) Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286(5442):1166–1171

    Article  CAS  PubMed  Google Scholar 

  4. Chen SH et al (2010) A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 285(17):12803–12812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bastos de Oliveira FM et al (2015) Phosphoproteomics reveals distinct modes of Mec1/ATR signaling during DNA replication. Mol Cell 57(6):1124–1132

    Article  CAS  PubMed  Google Scholar 

  6. Hustedt N et al (2015) Yeast PP4 interacts with ATR homolog Ddc2-Mec1 and regulates checkpoint signaling. Mol Cell 57:273

    Article  CAS  PubMed  Google Scholar 

  7. Zhou C et al (2016) Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks. Proc Natl Acad Sci U S A 113(26):E3667–E3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Albuquerque CP et al (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ong SE et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  10. Alvino GM et al (2007) Replication in hydroxyurea: it’s a matter of time. Mol Cell Biol 27(18):6396–6406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tercero JA, Longhese MP, Diffley JF (2003) A central role for DNA replication forks in checkpoint activation and response. Mol Cell 11(5):1323–1336

    Article  CAS  PubMed  Google Scholar 

  12. Horvatovich P et al (2010) Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples. J Sep Sci 33(10):1421–1437

    Article  CAS  PubMed  Google Scholar 

  13. Michalski A et al (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics 10(9):M111.011015

    Article  PubMed  PubMed Central  Google Scholar 

  14. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989

    Article  CAS  PubMed  Google Scholar 

  15. Kall L et al (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4(11):923–925

    Article  PubMed  Google Scholar 

  16. Han DK et al (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19(10):946–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taus T et al (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10(12):5354–5362

    Article  CAS  PubMed  Google Scholar 

  18. Zhao X, Muller EG, Rothstein R (1998) A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 2(3):329–340

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Beatriz S. Almeida for technical support. M.B.S. is supported by grants from the National Institutes of Health (R01-GM097272), F.M.B.d.O. is supported by grants from FAPERJ No E-26/010.002831/2014 and No E-26/010.003001/2014 and from CNPq No 446143/2014 and D.K. is supported by Cornell Vertebrate Genomic Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus B. Smolka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bastos de Oliveira, F.M., Kim, D., Lanz, M., Smolka, M.B. (2018). Quantitative Analysis of DNA Damage Signaling Responses to Chemical and Genetic Perturbations. In: Muzi-Falconi, M., Brown, G. (eds) Genome Instability. Methods in Molecular Biology, vol 1672. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7306-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7306-4_42

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7305-7

  • Online ISBN: 978-1-4939-7306-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics