Skip to main content

A Chromatin Fiber Analysis Pipeline to Model DNA Synthesis and Structures in Fission Yeast

  • Protocol
  • First Online:
Genome Instability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1672))

Abstract

Chromatin fibers, first described by Jackson and Pombo (J Cell Biol 140(6):1285–1295, 1998) are prepared from cells lysed on glass coverslips, and require minimal equipment to produce. Since the DNA is not previously treated with denaturing agents, proteins are left intact and may be used to model other DNA-based processes. Such an analysis can be daunting, without a rigorous method for analysis. We describe a pipeline for chromatin fiber use to model DNA replication complexes. Full protocols for chromatin fiber preparation and staining are presented. Further, we have developed an analysis algorithm for One Dimensional Data—Boolean Logic Operations Binning System (ODD-BLOBS). This freely available software defines replication and protein tracts, measures their lengths, and then correlates replicated areas with protein distributions. Our methods and analysis are tested in Schizosaccharomyces pombe (fission yeast) but may be applied to model replication structures across multiple organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Patel PK, Arcangioli B, Baker SP, Bensimon A, Rhind N (2006) DNA replication origins fire stochastically in fission yeast. Mol Biol Cell 17(1):308–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scorah J, McGowan CH (2009) Claspin and Chk1 regulate replication fork stability by different mechanisms. Cell Cycle 8(7):1036–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140(6):1285–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sabatinos SA, Green MD, Forsburg SL (2012) Continued DNA synthesis in replication checkpoint mutants leads to fork collapse. Mol Cell Biol 32(24):4986–4997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11(11):1076–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2(3):319–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ross JE, Woodlief KS, Sullivan BA (2016) Inheritance of the CENP-A chromatin domain is spatially and temporally constrained at human centromeres. Epigenetics Chromatin 9:20

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bailis JM, Luche DD, Hunter T, Forsburg SL (2008) Minichromosome maintenance proteins interact with checkpoint and recombination proteins to promote s-phase genome stability. Mol Cell Biol 28(5):1724–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cohen SM, Chastain PD 2nd, Cordeiro-Stone M, Kaufman DG (2009) DNA replication and the GINS complex: localization on extended chromatin fibers. Epigenetics Chromatin 2(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sivakumar S, Porter-Goff M, Patel PK, Benoit K, Rhind N (2004) In vivo labeling of fission yeast DNA with thymidine and thymidine analogs. Methods 33(3):213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luke-Glaser S, Luke B, Grossi S, Constantinou A (2010) FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling. EMBO J 29(4):795–805

    Article  CAS  PubMed  Google Scholar 

  12. Bradford JA and Clarke ST (2011) Dual-pulse labeling using 5-ethynyl-2′-deoxyuridine (EdU) and 5-bromo-2′-deoxyuridine (BrdU) in flow cytometry. Curr Protoc Cytom Chapter 7 Unit 7 38

    Google Scholar 

  13. Sullivan BA (2010) Optical mapping of protein-DNA complexes on chromatin fibers. Methods Mol Biol 659:99–115

    Article  CAS  PubMed  Google Scholar 

  14. Haaf T, Ward DC (1994) Structural analysis of alpha-satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum Mol Genet 3(5):697–709

    Article  CAS  PubMed  Google Scholar 

  15. Hodson JA, Bailis JM, Forsburg SL (2003) Efficient labeling of fission yeast Schizosaccharomyces pombe with thymidine and BUdR. Nucleic Acids Res 31(21):e134

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sabatinos SA, Mastro TL, Green MD, Forsburg SL (2013) A mammalian-like DNA damage response of fission yeast to nucleoside analogs. Genetics 193(1):143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Forsburg SL, Sherman DA, Ottilie S, Yasuda JR, Hodson JA (1997) Mutational analysis of Cdc19p, a Schizosaccharomyces pombe MCM protein. Genetics 147(3):1025–1041

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rasband WS. ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/. 1997–2011

  19. Green MD, Sabatinos SA, Forsburg SL (2015) Microscopy techniques to examine DNA replication in fission yeast. Methods Mol Biol 1300:13–41

    Article  CAS  PubMed  Google Scholar 

  20. Sabatinos SA, Forsburg SL (2015) Measuring DNA content by flow cytometry in fission yeast. Methods Mol Biol 1300:79–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Susan Forsburg (University of Southern California, USA) for her support of this project and for providing strain FY3841. The Sabatinos lab is supported by NSERC DG RGPIN/04405-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah A. Sabatinos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sabatinos, S.A., Green, M.D. (2018). A Chromatin Fiber Analysis Pipeline to Model DNA Synthesis and Structures in Fission Yeast. In: Muzi-Falconi, M., Brown, G. (eds) Genome Instability. Methods in Molecular Biology, vol 1672. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7306-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7306-4_34

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7305-7

  • Online ISBN: 978-1-4939-7306-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics