Skip to main content

Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast

  • Protocol
  • First Online:
Genome Instability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1672))

Abstract

DNA replication initiates at DNA replication origins after unwinding of double-strand DNA(dsDNA) by replicative helicase to generate single-stranded DNA (ssDNA) templates for the continuous synthesis of leading-strand and the discontinuous synthesis of lagging-strand. Therefore, methods capable of detecting strand-specific information will likely yield insight into the association of proteins at leading and lagging strand of DNA replication forks and the regulation of leading and lagging strand synthesis during DNA replication. The enrichment and Sequencing of Protein-Associated Nascent DNA (eSPAN), which measure the relative amounts of proteins at nascent leading and lagging strands of DNA replication forks, is a step-wise procedure involving the chromatin immunoprecipitation (ChIP) of a protein of interest followed by the enrichment of protein-associated nascent DNA through BrdU immunoprecipitation. The isolated ssDNA is then subjected to strand-specific sequencing. This method can detect whether a protein is enriched at leading or lagging strand of DNA replication forks. In addition to eSPAN, two other strand-specific methods, (ChIP-ssSeq), which detects potential protein-ssDNA binding and BrdU-IP-ssSeq, which can measure synthesis of both leading and lagging strand, were developed along the way. These methods can provide strand-specific and complementary information about the association of the target protein with DNA replication forks as well as synthesis of leading and lagging strands genome wide. Below, we describe the detailed eSPAN, ChIP-ssSeq, and BrdU-IP-ssSeq protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Stillman B (2005) Origin recognition and the chromosome cycle. FEBS Lett 579(4):877–884. Doi:S0014-5793(04)01538-8 [pii]10.1016/j.Febslet.2004.12.011

    Article  CAS  PubMed  Google Scholar 

  2. Okazaki R, Okazaki T, Sakabe K, Sugimoto K, Sugino A (1968) Mechanism of DNA chain growth. I Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc Natl Acad Sci U S A 59(2):598–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O'Donnell M, Langston L, Stillman B (2013) Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect Biol 5(7.) doi:10.1101/cshperspect.a010108a010108

    Google Scholar 

  4. Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374. doi:10.1146/annurev.biochem.71.110601.135425110601.135425 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Waga S, Stillman B (1998) The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67:721–751. doi:10.1146/annurev.biochem.67.1.721

    Article  CAS  PubMed  Google Scholar 

  6. Bell SD, Botchan MR (2013) The Minichromosome maintenance replicative helicase. Cold Spring Harb Perspect Biol 5(11):a012807. doi:cshperspect.a012807v1 [pii]10.1101/cshperspect.a012807cshperspect.a012807 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bell SP, Kaguni JM (2013) Helicase loading at chromosomal origins of replication. Cold Spring Harb Perspect Biol 5(6.) doi:cshperspect.a010124 [pii]10.1101/cshperspect.a010124

    Google Scholar 

  8. MacAlpine DM, Almouzni G (2013) Chromatin and DNA replication. Cold Spring Harb Perspect Biol 5(8):a010207. doi:cshperspect.a010207 [pii]10.1101/cshperspect.a010207

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arias EE, Walter JC (2007) Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 21(5):497–518. doi:21/5/497 [pii]10.1101/gad.1508907

    Article  CAS  PubMed  Google Scholar 

  10. Aparicio OM, Stout AM, Bell SP (1999) Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc Natl Acad Sci U S A 96(16):9130–9135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aparicio OM, Weinstein DM, Bell SP (1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91(1):59–69

    Article  CAS  PubMed  Google Scholar 

  12. Yu C, Gan H, Han J, Zhou ZX, Jia S, Chabes A, Farrugia G, Ordog T, Zhang Z (2014) Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol Cell 56(4):551–563. doi:S1097-2765(14)00749-7 [pii]10.1016/j.molcel.2014.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA (2007) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317(5834):127–130. doi:DOI 10.1126/science.1144067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PM, Kunkel TA (2008) Division of labor at the eukaryotic replication fork. Mol Cell 30(2):137–144. doi:10.1016/j.molcel.2008.02.022S1097-2765(08)00168-8 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Viggiani CJ, Aparicio OM (2006) New vectors for simplified construction of BrdU-incorporating strains of Saccharomyces cerevisiae. Yeast 23(14–15):1045–1051. doi:10.1002/yea.1406

    Article  CAS  PubMed  Google Scholar 

  16. Viggiani CJ, Knott SR, Aparicio OM (2010) Genome-wide analysis of DNA synthesis by BrdU immunoprecipitation on tiling microarrays (BrdU-IP-chip) in Saccharomyces cerevisiae. Cold Spring Harb Protoc 2010(2.) pdb prot5385. doi:2010/2/pdb.prot5385 [pii]10.1101/pdb.prot5385

    Google Scholar 

  17. Gansauge MT, Meyer M (2013) Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat Protoc 8(4):737–748. doi:nprot.2013.038 [pii]10.1038/nprot.2013.038

    Article  PubMed  Google Scholar 

  18. Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, Schraiber JG, Jay F, Prufer K, de Filippo C, Sudmant PH, Alkan C, Fu Q, Do R, Rohland N, Tandon A, Siebauer M, Green RE, Bryc K, Briggs AW, Stenzel U, Dabney J, Shendure J, Kitzman J, Hammer MF, Shunkov MV, Derevianko AP, Patterson N, Andres AM, Eichler EE, Slatkin M, Reich D, Kelso J, Paabo S (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science 338(6104):222–226. doi:10.1126/science.1224344science.1224344 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359. doi:nmeth.1923 [pii]10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. doi:10.1093/bioinformatics/btq033btq033 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137. doi:10.1186/gb-2008-9-9-r137gb-2008-9-9-r137 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank Dr. Albert Serra Cardona for editing this protocol. This work was supported by NIH grants GM118015 to Z.Z and C.Y. is supported by the Edward C. Kendall Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Zhang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yu, C., Gan, H., Zhang, Z. (2018). Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast. In: Muzi-Falconi, M., Brown, G. (eds) Genome Instability. Methods in Molecular Biology, vol 1672. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7306-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7306-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7305-7

  • Online ISBN: 978-1-4939-7306-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics