Skip to main content

Quantitative Bromodeoxyuridine Immunoprecipitation Analyzed by High-Throughput Sequencing (qBrdU-Seq or QBU)

  • Protocol
  • First Online:
Genome Instability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1672))

Abstract

Incorporation into DNA of nucleoside analogs like 5-bromo-2′-deoxyuridine (BrdU) is a powerful tool for in vivo studies of DNA synthesis during replication and repair. Immunoprecipitation of BrdU-labeled DNA analyzed by DNA sequencing (BrdU-IP-seq) allows for genome-wide, sequence-specific tracking of replication origin and replication fork dynamics under different conditions, such as DNA damage and replication stress, and in mutant strains. We have recently developed a quantitative method for BrdU-IP-seq (qBrdU-seq) involving DNA barcoding to enable quantitative analysis of multiple experimental samples subjected to BrdU-IP-seq. After initial barcoding of multiple, individually BrdU-labeled genomic DNA samples, a pooling strategy is used for all subsequent steps including immunoprecipitation, amplification, and sequencing, which eliminates sample-to-sample variability in these steps. Parallel processing of an aliquot of the pooled input sample provides a direct control for the normalization of the data and yields results that allow quantitative comparisons of the experimental samples. Though developed for the analysis of S. cerevisiae, this method should be directly adaptable to other model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dolbeare F (1996) Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part III. Proliferation in normal, injured and diseased tissue, growth factors, differentiation, DNA replication sites and in situ hybridization. Histochem J 28(8):531–575

    Article  CAS  PubMed  Google Scholar 

  2. Lengronne A, Pasero P, Bensimon A, Schwob E (2001) Monitoring S phase progression globally and locally using BrdU incorporation in TK(+) yeast strains. Nucleic Acids Res 29(7):1433–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vernis L, Piskur J, Diffley JF (2003) Reconstitution of an efficient thymidine salvage pathway in Saccharomyces cerevisiae. Nucleic Acids Res 31(19):e120

    Article  PubMed  PubMed Central  Google Scholar 

  4. Viggiani CJ, Aparicio OM (2006) New vectors for simplified construction of BrdU-incorporating strains of Saccharomyces cerevisiae. Yeast 23(14–15):1045–1051

    Article  CAS  PubMed  Google Scholar 

  5. Vickers MF, Mani RS, Sundaram M, Hogue DL, Young JD, Baldwin SA, Cass CE (1999) Functional production and reconstitution of the human equilibrative nucleoside transporter (hENT1) in Saccharomyces cerevisiae. Interaction of inhibitors of nucleoside transport with recombinant hENT1 and a glycosylation-defective derivative (hENT1/N48Q). Biochem J 339(Pt 1):21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hodson JA, Bailis JM, Forsburg SL (2003) Efficient labeling of fission yeast Schizosaccharomyces pombe with thymidine and BUdR. Nucleic Acids Res 31(21):e134

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sivakumar S, Porter-Goff M, Patel PK, Benoit K, Rhind N (2004) In vivo labeling of fission yeast DNA with thymidine and thymidine analogs. Methods 33(3):213–219. doi:10.1016/j.ymeth.2003.11.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Green MD, Sabatinos SA, Forsburg SL (2015) Microscopy techniques to examine DNA replication in fission yeast. Methods Mol Biol 1300:13–41. doi:10.1007/978-1-4939-2596-4_2

    Article  CAS  PubMed  Google Scholar 

  9. Bianco JN, Poli J, Saksouk J, Bacal J, Silva MJ, Yoshida K, Lin YL, Tourriere H, Lengronne A, Pasero P (2012) Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing. Methods 57(2):149–157. doi:10.1016/j.ymeth.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  10. Peace JM, Ter-Zakarian A, Aparicio OM (2014) Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome. PLoS One 9(5):e98501. doi:10.1371/journal.pone.0098501

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ryba T, Battaglia D, Pope BD, Hiratani I, Gilbert DM (2011) Genome-scale analysis of replication timing: from bench to bioinformatics. Nat Protoc 6(6):870–895. doi:nprot.2011.328 [pii] 1038/nprot.2011.328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Viggiani CJ, Knott SR, Aparicio OM (2010) Genome-wide analysis of DNA synthesis by BrdU immunoprecipitation on tiling microarrays (BrdU-IP-chip) in Saccharomyces cerevisiae. Cold Spring Harb Protoc 2010(2.) pdb prot5385. doi:2010/2/pdb.prot5385 [pii] 1101/pdb.prot5385

    Google Scholar 

  13. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE (2015) Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33(11):1165–1172. doi:10.1038/nbt.3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peace JM, Villwock SK, Zeytounian JL, Gan Y, Aparicio OM (2016) Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase. Genome Res 26(3):365–375. doi:10.1101/gr.196857.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aronesty E (2011) Command-line tools for processing biological sequencing data. https://github.com/ExpressionAnalysis/ea-utils.

  16. Aronesty E (2013) Comparison of sequence utility programs. Open Bioinform J 7:1–8. doi:10.2174/1875036201307010001

    Article  Google Scholar 

  17. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359. doi:10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  Google Scholar 

  19. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. doi:10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137. doi:10.1186/gb-2008-9-9-r137

    Article  PubMed  PubMed Central  Google Scholar 

  21. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106. Doi:gb-2010-11-10-r106 [pii] 1186/gb-2010-11-10-r106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stark R, Brown R (2013) DiffBind: differential binding analysis of ChIP-Seq peak data. bioconductor.Org. http://bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf

  23. Dunham JP, Friesen ML (2013) A cost-effective method for high-throughput construction of illumina sequencing libraries. Cold Spring Harb Protoc 2013(9):820–834. doi:10.1101/pdb.prot074187

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank current and previous members of the Aparicio lab for comments on the protocol. Research in the Aparicio lab has been funded by NIH R01 GMS05494.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar M. Aparicio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Haye-Bertolozzi, J.E., Aparicio, O.M. (2018). Quantitative Bromodeoxyuridine Immunoprecipitation Analyzed by High-Throughput Sequencing (qBrdU-Seq or QBU). In: Muzi-Falconi, M., Brown, G. (eds) Genome Instability. Methods in Molecular Biology, vol 1672. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7306-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7306-4_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7305-7

  • Online ISBN: 978-1-4939-7306-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics