Skip to main content

Designing and Implementing Algorithmic DNA Assembly Pipelines for Multi-Gene Systems

  • Protocol
Synthetic Metabolic Pathways

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1671))

Abstract

Advances in DNA synthesis and assembly technology allow for the high-throughput fabrication of hundreds to thousands of multi-part genetic constructs in a short time. This allows for rapid hypothesis-testing and genetic optimization in multi-gene biological systems. Here, we discuss key considerations to design and implement an algorithmic DNA assembly pipeline that provides the freedom to change nearly any design variable in a multi-gene system. In addition to considerations for pipeline design, we describe protocols for three useful molecular biology techniques in plasmid construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Regev A, Shapiro E (2003) Cells as computation. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2602:1–3. doi:10.1007/3-540-36481-1_1

    Google Scholar 

  2. Brophy JAN, Voigt CA (2014) Principles of genetic circuit design. Nat Methods 11(5):508–520. doi:10.1038/nmeth.2926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ro D, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:3–6. doi:10.1038/nature04640

    Article  Google Scholar 

  4. Ajikumar PK, Xiao W-H, Tyo KEJ et al (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74. doi:10.1126/science.1191652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scheibel T (2004) Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb Cell Factories 3(1):14. doi:10.1186/1475-2859-3-14.

    Article  Google Scholar 

  6. Miyao M (2003) Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J Exp Bot 54(381):179–189. doi:10.1093/jxb/54.381.179.

    Article  CAS  PubMed  Google Scholar 

  7. Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: technologies and applications. Nat Methods 11(5):499–507. doi:10.1038/nmeth.2918

    Article  CAS  PubMed  Google Scholar 

  8. Chan LY, Kosuri S, Endy D (2005) Refactoring bacteriophage T7. Mol Syst Biol 1:2005.0018. doi:10.1038/msb4100025

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lauren C, Lauren BA, Smanski MJ, et al. Functional optimization of gene clusters by combinatorial design and assembly. 2014. doi:10.1038/nbt.3063.

  10. Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H (2013) Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth Biol 2(11):662–669. doi:10.1021/sb400058n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oßwald C, Zipf G, Schmidt G et al (2014) Modular construction of a functional artificial epothilone polyketide pathway. ACS Synth Biol 3:759–772. doi:10.1021/sb300080t

    Article  PubMed  Google Scholar 

  12. Annaluru N, Muller H, Mitchell LA et al (2014) Total synthesis of a functional designer eukaryotic chromosome. Science 344:55–59. doi:10.1126/science.1249252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. doi:10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  14. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11). doi:10.1371/journal.pone.0003647

  15. Shao Z, Zhao H, Zhao HDNA (2009) Assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37(2):1–10. doi:10.1093/nar/gkn991.

    Article  CAS  Google Scholar 

  16. Werner S, Engler C, Weber E, Gruetzner R, Marillonnet SA (2012) Modular cloning system for standardized assembly of multigene constructs. Bioeng Bugs 3(1):38–43. doi:10.4161/bbug.3.1.18223.

    PubMed  Google Scholar 

  17. Sarrion-Perdigones A, Vazquez-Vilar M, Palací J et al (2013) GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol 162(3):1618–1631. doi:10.1104/pp.113.217661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anderson JC, Dueber JE, Leguia M et al (2010) BglBricks: a flexible standard for biological part assembly. J Biol Eng 4(1):1. doi:10.1186/1754-1611-4-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. De Paoli HC, Tuskan GA, Yang X (2016) An innovative platform for quick and flexible joining of assorted DNA fragments. Sci Rep 6:19278. doi:10.1038/srep19278

    Article  PubMed  PubMed Central  Google Scholar 

  20. Casini A, Storch M, Baldwin GS, Ellis T (2015) Bricks and blueprints: methods and standards for DNA assembly. Nat Rev Mol Cell Biol 9:1–9. doi:10.1038/nrm4014

    Google Scholar 

  21. Hutchison CA, Chuang R-YR-Y, Noskov VN et al (2016) Design and synthesis of a minimal bacterial genome. Science 351(6280):aad6253. doi:10.1126/science.aad6253

    Article  PubMed  Google Scholar 

  22. Ng DTW, Sarkar CA (2014) NP-Sticky: a web server for optimizing DNA ligation with non-palindromic sticky ends. J Mol Biol 426(8):1861–1869. doi:10.1016/j.jmb.2014.02.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

S-Y. H. is supported by Biocatalysis Grant from the University of Minnesota BioTechnology Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Smanski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hsu, SY., Smanski, M.J. (2018). Designing and Implementing Algorithmic DNA Assembly Pipelines for Multi-Gene Systems. In: Jensen, M.K., Keasling, J.D. (eds) Synthetic Metabolic Pathways. Methods in Molecular Biology, vol 1671. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7295-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7295-1_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7294-4

  • Online ISBN: 978-1-4939-7295-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics