Skip to main content

Computational Methods to Assess the Production Potential of Bio-Based Chemicals

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1671))

Abstract

Elevated costs and long implementation times of bio-based processes for producing chemicals represent a bottleneck for moving to a bio-based economy. A prospective analysis able to elucidate economically and technically feasible product targets at early research phases is mandatory. Computational tools can be implemented to explore the biological and technical spectrum of feasibility, while constraining the operational space for desired chemicals. In this chapter, two different computational tools for assessing potential for bio-based production of chemicals from different perspectives are described in detail. The first tool is GEM-Path: an algorithm to compute all structurally possible pathways from one target molecule to the host metabolome. The second tool is a framework for Modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes, and economic impact assessment. Integrating GEM-Path and MuSIC will play a vital role in supporting early phases of research efforts and guide the policy makers with decisions, as we progress toward planning a sustainable chemical industry.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pollak P (2011) Fine chemicals: the industry and the business. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  2. Herrgard M, Sukumara S, Campodonico M et al (2015) A multi-scale, multi-disciplinary approach for assessing the technological, economic and environmental performance of bio-based chemicals. Biochem Soc Trans 43:1151–1156

    Article  CAS  PubMed  Google Scholar 

  3. Campodonico MA, Andrews BA, Asenjo JA et al (2014) Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab Eng 25:140–158

    Article  CAS  PubMed  Google Scholar 

  4. Zhuang KH, Herrgård MJ (2015) Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production. Metab Eng 31:1–12

    Article  CAS  PubMed  Google Scholar 

  5. Zhuang K, Bakshi BR, Herrgård MJ (2013) Multi-scale modeling for sustainable chemical production. Biotechnol J 8:973–984

    Article  CAS  PubMed  Google Scholar 

  6. Dai Z, Nielsen J (2015) Advancing metabolic engineering through systems biology of industrial microorganisms. Curr Opin Biotechnol 36:8–15

    Article  PubMed  Google Scholar 

  7. Hadadi N, Hatzimanikatis V (2015) Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways. Curr Opin Chem Biol 28:99–104

    Article  CAS  PubMed  Google Scholar 

  8. Carbonell P, Planson A-G, Fichera D et al (2011) A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst Biol 5:122

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cho A, Yun H, Park JH et al (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 4:35

    Article  PubMed  PubMed Central  Google Scholar 

  10. Henry CS, Broadbelt LJ, Hatzimanikatis V (2010) Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol Bioeng 106:462–473

    CAS  PubMed  Google Scholar 

  11. Yim H, Harry Y, Robert H et al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    Article  CAS  PubMed  Google Scholar 

  12. Orth JD, Ines T, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bordbar A, Monk JM, King ZA et al (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120

    Article  CAS  PubMed  Google Scholar 

  14. McCloskey D, Palsson BØ, Feist AM (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9:661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahadevan R, Edwards JS, Doyle FJ 3rd (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83:1331–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhuang K, Kai Z, Laurence Y et al (2013) Dynamic strain scanning optimization: an efficient strain design strategy for balanced yield, titer, and productivity. DySScO strategy for strain design. BMC Biotechnol 13:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60:3724–3731

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Caspeta L, Luis C, Jens N (2013) Economic and environmental impacts of microbial biodiesel. Nat Biotechnol 31:789–793

    Article  CAS  PubMed  Google Scholar 

  19. Hermann BG, Patel M (2007) Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology. Appl Biochem Biotechnol 136:361–388

    Article  CAS  PubMed  Google Scholar 

  20. Smart B (1992) Industry as a metabolic activity. Proc Natl Acad Sci U S A 89:804–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Boyle NM, Banck M, James CA et al (2011) Open babel: an open chemical toolbox. J Chem 3:33

    Article  Google Scholar 

  22. Steinbeck C, Han Y, Kuhn S et al (2003) The chemistry development kit (CDK): an open-source java library for chemo- and bioinformatics. J Chem Inf Comput Sci 43:493–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. G. Landrum RDKit. http://www.rdkit.org.

  24. James CA, Weininger D, Delany J (1995) Daylight theory manual. Daylight Chemical Information Systems, Irvine, CA

    Google Scholar 

  25. Mu F, Unkefer CJ, Unkefer PJ et al (2011) Prediction of metabolic reactions based on atomic and molecular properties of small-molecule compounds. Bioinformatics 27:1537–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanehisa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357

    Article  CAS  PubMed  Google Scholar 

  27. Curran KA, Alper HS (2012) Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab Eng 14:289–297

    Article  CAS  PubMed  Google Scholar 

  28. Machado D, Daniel M, Herrgård MJ (2015) Co-evolution of strain design methods based on flux balance and elementary mode analysis. Metab Eng Commun 2:85–92

    Article  Google Scholar 

  29. biosustain biosustain/MuSIC-PDO-3HP. https://github.com/biosustain/MuSIC-PDO-3HP

  30. cdanielmachado cdanielmachado/framed. https://github.com/cdanielmachado/framed

  31. Overbeek R (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92:1792–1805

    Article  CAS  PubMed  Google Scholar 

  33. King ZA, Lu J, Dräger A et al (2016) BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res 44:D515–D522

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Campodonico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Campodonico, M.A., Sukumara, S., Feist, A.M., Herrgård, M.J. (2018). Computational Methods to Assess the Production Potential of Bio-Based Chemicals. In: Jensen, M.K., Keasling, J.D. (eds) Synthetic Metabolic Pathways. Methods in Molecular Biology, vol 1671. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7295-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7295-1_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7294-4

  • Online ISBN: 978-1-4939-7295-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics