Skip to main content

Computational Approaches on Stoichiometric and Kinetic Modeling for Efficient Strain Design

  • Protocol
Synthetic Metabolic Pathways

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1671))

Abstract

Engineering biological systems that are capable of overproducing products of interest is the ultimate goal of any biotechnology application. To this end, stoichiometric (or steady state) and kinetic models are increasingly becoming available for a variety of organisms including prokaryotes, eukaryotes, and microbial communities. This ever-accelerating pace of such model reconstructions has also spurred the development of optimization-based strain design techniques. This chapter highlights a number of such frameworks developed in recent years in order to generate testable hypotheses (in terms of genetic interventions), thus addressing the challenges in metabolic engineering. In particular, three major methods are covered in detail including two methods for designing strains (i.e., one stoichiometric model-based and the other by integrating kinetic information into a stoichiometric model) and one method for analyzing microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maranas CD, Zomorrodi AR (2016) Optimization methods in metabolic networks. Wiley, NJ

    Book  Google Scholar 

  2. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657. doi:10.1002/bit.10803

    Article  CAS  PubMed  Google Scholar 

  3. Tepper N, Shlomi T (2010) Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 26(4):536–543. doi:10.1093/bioinformatics/btp704

    Article  CAS  PubMed  Google Scholar 

  4. Kim J, Reed JL, Maravelias CT (2011) Large-scale bi-level strain design approaches and mixed-integer programming solution techniques. PLoS One 6(9):e24162. doi:10.1371/journal.pone.0024162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pharkya P, Maranas CD (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng 8(1):1–13. doi:10.1016/j.ymben.2005.08.003

    Article  CAS  PubMed  Google Scholar 

  6. Kim J, Reed JL (2010) OptORF: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst Biol 4:53. doi:10.1186/1752-0509-4-53

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ranganathan S, Suthers PF, Maranas CD (2010) OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol 6(4):e1000744. doi:10.1371/journal.pcbi.1000744

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chowdhury A, Zomorrodi AR, Maranas CD (2014) k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput Biol 10(2):e1003487. doi:10.1371/journal.pcbi.1003487

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cotten C, Reed JL (2013) Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. Biotechnol J 8(5):595–604. doi:10.1002/biot.201200316

    Article  CAS  PubMed  Google Scholar 

  10. Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14(11):2367–2376. doi:10.1101/gr.2872004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zomorrodi AR, Lafontaine Rivera JG, Liao JC, Maranas CD (2013) Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks. Biotechnol J 8(9):1090–1104. doi:10.1002/biot.201200270

    Article  CAS  PubMed  Google Scholar 

  12. Palsson B (2006) Systems biology : properties of reconstructed networks. Cambridge University Press, Cambridge; New York

    Book  Google Scholar 

  13. Oberhardt MA, Palsson BØ, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320–320. doi:10.1038/msb.2009.77

    Article  PubMed  PubMed Central  Google Scholar 

  14. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248. http://www.nature.com/nbt/journal/v28/n3/abs/nbt.1614.html—supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oberhardt MA, Chavali AK, Papin JA (2009) Flux balance analysis: interrogating genome-scale metabolic networks. Methods Mol Biol 500:61–80. doi:10.1007/978-1-59745-525-1_3

    Article  CAS  PubMed  Google Scholar 

  16. Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60(10):3724–3731

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Terzer M, Maynard ND, Covert MW, Stelling J (2009) Genome-scale metabolic networks. Wiley Interdiscip Rev Syst Biol Med 1(3):285–297. doi:10.1002/wsbm.37

    Article  CAS  PubMed  Google Scholar 

  18. Varma A, Palsson BO (1993) Metabolic capabilities of Escherichia coli: I. Synthesis of biosynthetic precursors and cofactors. J Theor Biol 165(4):477–502. doi:10.1006/jtbi.1993.1202

    Article  CAS  PubMed  Google Scholar 

  19. Chowdhury A, Maranas CD (2015) Designing overall stoichiometric conversions and intervening metabolic reactions. Sci Rep 5:16009. doi:10.1038/srep16009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99(23):15112–15117. doi:10.1073/pnas.232349399

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fleming RM, Thiele I, Provan G, Nasheuer HP (2010) Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism. J Theor Biol 264(3):683–692. doi:10.1016/j.jtbi.2010.02.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kadir TA, Mannan AA, Kierzek AM, McFadden J, Shimizu K (2010) Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification. Microb Cell Factories 9:88. doi:10.1186/1475-2859-9-88

    Article  Google Scholar 

  23. Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol Bioeng 55(4):592–608. doi:10.1002/(SICI)1097-0290(19970820)55:4<592::AID-BIT2>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  24. Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem 42(1):89–95

    Article  CAS  PubMed  Google Scholar 

  25. Tran LM, Rizk ML, Liao JC (2008) Ensemble modeling of metabolic networks. Biophys J 95(12):5606–5617. doi:10.1529/biophysj.108.135442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zomorrodi AR, Suthers PF, Ranganathan S, Maranas CD (2012) Mathematical optimization applications in metabolic networks. Metab Eng 14(6):672–686. doi:10.1016/j.ymben.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  27. Zielinski DC, Palsson BØ (2012) Kinetic modeling of metabolic networks. In: Wittmann C, Lee YS (eds) Systems metabolic engineering. Springer Netherlands, Dordrecht, pp 25–55. doi:10.1007/978-94-007-4534-6_2

    Chapter  Google Scholar 

  28. Pharkya P, Burgard AP, Maranas CD (2003) Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol Bioeng 84(7):887–899. doi:10.1002/bit.10857

    Article  CAS  PubMed  Google Scholar 

  29. Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91(5):643–648. doi:10.1002/bit.20542

    Article  CAS  PubMed  Google Scholar 

  30. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7(7):445–452. doi:10.1038/nchembio.580

    Article  CAS  PubMed  Google Scholar 

  31. Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54–R54

    Article  PubMed  PubMed Central  Google Scholar 

  32. Patil KR, Rocha I, Forster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6:308. doi:10.1186/1471-2105-6-308

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci U S A 102(21):7695–7700. doi:10.1073/pnas.0406346102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13(2):244–253. doi:10.1101/gr.234503

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zamboni N, Fendt SM, Ruhl M, Sauer U (2009) (13)C-based metabolic flux analysis. Nat Protoc 4(6):878–892. doi:10.1038/nprot.2009.58

    Article  CAS  PubMed  Google Scholar 

  36. Dalman T, Wiechert W, Noh K (2016) A scientific workflow framework for (13)C metabolic flux analysis. J Biotechnol 232:12–24. doi:10.1016/j.jbiotec.2015.12.032

    Article  CAS  PubMed  Google Scholar 

  37. Wiechert W, Mollney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3(3):265–283. doi:10.1006/mben.2001.0188

    Article  CAS  PubMed  Google Scholar 

  38. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121. doi:10.1038/msb4100155

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ranganathan S, Tee TW, Chowdhury A, Zomorrodi AR, Yoon JM, Fu Y, Shanks JV, Maranas CD (2012) An integrated computational and experimental study for overproducing fatty acids in Escherichia coli. Metab Eng 14(6):687–704. doi:10.1016/j.ymben.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  40. Chowdhury A, Khodayari A, Maranas CD (2015) Improving prediction fidelity of cellular metabolism with kinetic descriptions. Curr Opin Biotechnol 36:57–64. doi:10.1016/j.copbio.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  41. Khodayari A, Zomorrodi AR, Liao JC, Maranas CD (2014) A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab Eng 25:50–62. doi:10.1016/j.ymben.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  42. Khodayari A, Chowdhury A, Maranas CD (2015) Succinate overproduction: a case study of computational strain design using a comprehensive Escherichia coli kinetic model. Front Bioeng Biotechnol 2. doi:10.3389/fbioe.2014.00076

  43. Heavner BD, Smallbone K, Price ND, Walker LP (2013) Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database (Oxford) 2013:bat059. doi:10.1093/database/bat059

    Article  Google Scholar 

  44. de Oliveira Dal'Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152(2):579–589. doi:10.1104/pp.109.148817

    Article  PubMed  PubMed Central  Google Scholar 

  45. Saha R, Suthers PF, Maranas CD (2011) Zea mays iRS1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism. PLoS One 6(7):e21784. doi:10.1371/journal.pone.0021784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dal'Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154(4):1871–1885. doi:10.1104/pp.110.166488

    Article  PubMed  Google Scholar 

  47. Pilalis E, Chatziioannou A, Thomasset B, Kolisis F (2011) An in silico compartmentalized metabolic model of Brassica Napus enables the systemic study of regulatory aspects of plant central metabolism. Biotechnol Bioeng 108(7):1673–1682. doi:10.1002/bit.23107

    Article  CAS  PubMed  Google Scholar 

  48. Poolman MG, Kundu S, Shaw R, Fell DA (2013) Responses to light intensity in a genome-scale model of rice metabolism. Plant Physiol 162(2):1060–1072. doi:10.1104/pp.113.216762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grafahrend-Belau E, Schreiber F, Koschutzki D, Junker BH (2009) Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol 149(1):585–598. doi:10.1104/pp.108.129635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Simons M, Saha R, Amiour N, Kumar A, Guillard L, Clement G, Miquel M, Li Z, Mouille G, Lea PJ, Hirel B, Maranas CD (2014) Assessing the metabolic impact of nitrogen availability using a compartmentalized maize leaf genome-scale model. Plant Physiol 166(3):1659–1674. doi:10.1104/pp.114.245787

    Article  PubMed  PubMed Central  Google Scholar 

  51. Grafahrend-Belau E, Junker A, Eschenroder A, Muller J, Schreiber F, Junker BH (2013) Multiscale metabolic modeling: dynamic flux balance analysis on a whole-plant scale. Plant Physiol 163(2):637–647. doi:10.1104/pp.113.224006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parachin NS, Bergdahl B, van Niel EW, Gorwa-Grauslund MF (2011) Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab Eng 13(5):508–517. doi:10.1016/j.ymben.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  53. Chen N, Koumpouras GC, Polizzi KM, Kontoravdi C (2012) Genome-based kinetic modeling of cytosolic glucose metabolism in industrially relevant cell lines: Saccharomyces cerevisiae and Chinese hamster ovary cells. Bioprocess Biosyst Eng 35(6):1023–1033. doi:10.1007/s00449-012-0687-3

    Article  CAS  PubMed  Google Scholar 

  54. Robitaille J, Chen JK, Jolicoeur M (2015) A single dynamic metabolic model can describe mAb producing CHO cell batch and fed-batch cultures on different culture media. PLoS One 10(9). doi:10.1371/journal.pone.0136815. ARTN e0136815

  55. Villaverde AF, Bongard S, Mauch K, Balsa-Canto E, Banga JR (2016) Metabolic engineering with multi-objective optimization of kinetic models. J Biotechnol 222:1–8. doi:10.1016/j.jbiotec.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  56. Wang JP, Naik PP, Chen HC, Shi R, Lin CY, Liu J, Shuford CM, Li Q, Sun YH, Tunlaya-Anukit S, Williams CM, Muddiman DC, Ducoste JJ, Sederoff RR, Chiang VL (2014) Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa. Plant Cell 26(3):894–914. doi:10.1105/tpc.113.120881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zomorrodi AR, Maranas CD (2012) OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 8(2):e1002363. doi:10.1371/journal.pcbi.1002363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shrestha UT (2009) Microbial association–microbial interaction. Blogspot. http://upendrats.blogspot.com/2009/08/microbial-associationmicrobial.html. Accessed May 31 2016

  59. Hansen SK, Rainey PB, Haagensen JAJ, Molin S (2007) Evolution of species interactions in a biofilm community. Nature 445(7127):533–536. doi:10.1038/Nature05514

    Article  CAS  PubMed  Google Scholar 

  60. Xavier JB (2011) Social interaction in synthetic and natural microbial communities. Mol Syst Biol 7. doi:10.1038/Msb.2011.16. Artn 483

  61. Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459(7244):193–199. doi:10.1038/Nature08058

    Article  CAS  PubMed  Google Scholar 

  62. Wintermute EH, Silver PA (2010) Emergent cooperation in microbial metabolism. Mol Syst Biol 6:407. doi:10.1038/msb.2010.66

    Article  PubMed  PubMed Central  Google Scholar 

  63. Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci U S A 110(36):14592–14597. doi:10.1073/pnas.1218447110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wintermute EH, Silver PA (2010) Dynamics in the mixed microbial concourse. Genes Dev 24(23):2603–2614. doi:10.1101/gad.1985210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA (2007) Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 3:92. doi:10.1038/msb4100131

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bizukojc M, Dietz D, Sun J, Zeng AP (2010) Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archeon, Methanosarcina mazei, under anaerobic conditions. Bioprocess Biosyst Eng 33(4):507–523. doi:10.1007/s00449-009-0359-0

    Article  CAS  PubMed  Google Scholar 

  67. Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP, Cheng JK, Patel N, Yee A, Lewis RA, Eils R, Konig R, Palsson BO (2010) Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28(12):1279–1285. doi:10.1038/nbt.1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eleftheria Tzamali PP, Tollis IG, Reczko M (2009) Computational identification of bacterial communities. Int J Biol Biomol Agric Food Biotechnol Eng 3(4):185–192

    Google Scholar 

  69. Nagarajan H, Embree M, Rotaru AE, Shrestha PM, Feist AM, Palsson BO, Lovley DR, Zengler K (2013) Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association. Nat Commun 4:2809. doi:10.1038/ncomms3809

    Article  PubMed  Google Scholar 

  70. Ibarra RU, Fu P, Palsson BO, DiTonno JR, Edwards JS (2003) Quantitative analysis of Escherichia coli metabolic phenotypes within the context of phenotypic phase planes. J Mol Microbiol Biotechnol 6(2):101–108

    Article  CAS  PubMed  Google Scholar 

  71. Tzamali E, Poirazi P, Tollis IG, Reczko M (2011) A computational exploration of bacterial metabolic diversity identifying metabolic interactions and growth-efficient strain communities. BMC Syst Biol 5. doi:10.1186/1752-0509-5-167. Artn 167

  72. Mo ML, Jamshidi N, Palsson BO (2007) A genome-scale, constraint-based approach to systems biology of human metabolism. Mol Biosyst 3(9):598–603. doi:10.1039/b705597h

    Article  CAS  PubMed  Google Scholar 

  73. Wahrheit J, Nicolae A, Heinzle E (2011) Eukaryotic metabolism: measuring compartment fluxes. Biotechnol J 6(9):1071–1085. doi:10.1002/biot.201100032

    Article  CAS  PubMed  Google Scholar 

  74. Borenstein E, Feldman MW (2009) Topological signatures of species interactions in metabolic networks. J Comput Biol 16(2):191–200. doi:10.1089/cmb.2008.06TT

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Freilich S, Kreimer A, Borenstein E, Yosef N, Sharan R, Gophna U, Ruppin E (2009) Metabolic-network-driven analysis of bacterial ecological strategies. Genome Biol 10(6):R61. doi:10.1186/gb-2009-10-6-r61

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lehmann L, Keller L (2006) The evolution of cooperation and altruism—a general framework and a classification of models. J Evol Biol 19(5):1365–1376. doi:10.1111/j.1420-9101.2006.01119.x

    Article  CAS  PubMed  Google Scholar 

  77. Nadell CD, Foster KR, Xavier JB (2010) Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput Biol 6(3):e1000716. doi:10.1371/journal.pcbi.1000716

    Article  PubMed  PubMed Central  Google Scholar 

  78. Shou W, Ram S, Vilar JM (2007) Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci U S A 104(6):1877–1882. doi:10.1073/pnas.0610575104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vallino JJ (2003) Modeling microbial consortiums as distributed metabolic networks. Biol Bull 204(2):174–179

    Article  CAS  PubMed  Google Scholar 

  80. Frey E (2010) Evolutionary game theory: theoretical concepts and applications to microbial communities. Physica A 389(20):4265–4298

    Article  CAS  Google Scholar 

  81. Muller S, Vogt C, Laube M, Harms H, Kleinsteuber S (2009) Community dynamics within a bacterial consortium during growth on toluene under sulfate-reducing conditions. FEMS Microbiol Ecol 70(3):586–596. doi:10.1111/j.1574-6941.2009.00768.x

    Article  PubMed  Google Scholar 

  82. Zhuang K, Ma E, Lovley DR, Mahadevan R (2012) The design of long-term effective uranium bioremediation strategy using a community metabolic model. Biotechnol Bioeng 109(10):2475–2483. doi:10.1002/bit.24528

    Article  CAS  PubMed  Google Scholar 

  83. Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR (2011) Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5(2):305–316. doi:10.1038/ismej.2010.117

    Article  PubMed  Google Scholar 

  84. Salimi F, Zhuang K, Mahadevan R (2010) Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol J 5(7):726–738. doi:10.1002/biot.201000159

    Article  CAS  PubMed  Google Scholar 

  85. Hanly TJ, Henson MA (2011) Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol Bioeng 108(2):376–385. doi:10.1002/bit.22954

    Article  CAS  PubMed  Google Scholar 

  86. Hanly TJ, Henson MA (2013) Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol Biofuels 6(1):44. doi:10.1186/1754-6834-6-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Feng X, Xu Y, Chen Y, Tang YJ (2012) Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1. PLoS Comput Biol 8(2):e1002376. doi:10.1371/journal.pcbi.1002376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hoffner K, Harwood SM, Barton PI (2013) A reliable simulator for dynamic flux balance analysis. Biotechnol Bioeng 110(3):792–802. doi:10.1002/bit.24748

    Article  CAS  PubMed  Google Scholar 

  89. Mahadevan R, Edwards JS, Doyle FJ 3rd (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331–1340. doi:10.1016/S0006-3495(02)73903-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zomorrodi AR, Islam MM, Maranas CD (2014) d-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth Biol 3(4):247–257. doi:10.1021/sb4001307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the University of Nebraska-Lincoln faculty start-up grant 21-1106-4308 to R.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Islam, M.M., Saha, R. (2018). Computational Approaches on Stoichiometric and Kinetic Modeling for Efficient Strain Design. In: Jensen, M.K., Keasling, J.D. (eds) Synthetic Metabolic Pathways. Methods in Molecular Biology, vol 1671. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7295-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7295-1_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7294-4

  • Online ISBN: 978-1-4939-7295-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics