Skip to main content

High-Throughput Microfluidics for the Screening of Yeast Libraries

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1671))

Abstract

Cell factory development is critically important for efficient biological production of chemicals, biofuels, and pharmaceuticals. Many rounds of the Design–Build–Test–Learn cycles may be required before an engineered strain meeting specific metrics required for industrial application. The bioindustry prefer products in secreted form (secreted products or extracellular metabolites) as it can lower the cost of downstream processing, reduce metabolic burden to cell hosts, and allow necessary modification on the final products , such as biopharmaceuticals. Yet, products in secreted form result in the disconnection of phenotype from genotype, which may have limited throughput in the Test step for identification of desired variants from large libraries of mutant strains. In droplet microfluidic screening, single cells are encapsulated in individual droplet and enable high-throughput processing and sorting of single cells or clones. Encapsulation in droplets allows this technology to overcome the throughput limitations present in traditional methods for screening by extracellular phenotypes. In this chapter, we describe a protocol/guideline for high-throughput droplet microfluidics screening of yeast libraries for higher protein secretion . This protocol can be adapted to screening by a range of other extracellular products from yeast or other hosts.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. de Jong B, Siewers V, Nielsen J (2012) Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr Opin Biotechnol 23(4):624–630

    Article  PubMed  Google Scholar 

  2. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  Google Scholar 

  4. Nielsen J, Keasling Jay D (2016) Engineering cellular metabolism. Cell 164(6):1185–1197

    Article  CAS  PubMed  Google Scholar 

  5. Kitagawa T et al (2011) Identification of genes that enhance cellulase protein production in yeast. J Biotechnol 151(2):194–203

    Article  CAS  PubMed  Google Scholar 

  6. Babiskin AH, Smolke CD (2011) A synthetic library of RNA control modules for predictable tuning of gene expression in yeast. Mol Syst Biol 7:471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi SB, Ji HC, Siewers V, Nielsen J (2016) Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica. FEMS Yeast Res 16(1):fov108

    Article  PubMed  Google Scholar 

  8. Herzenberg LA et al (2002) The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin Chem 48(10):1819–1827

    CAS  PubMed  Google Scholar 

  9. Eisenstein M (2006) Cell sorting: divide and conquer. Nature 441(7097):1179–1185

    Article  PubMed  Google Scholar 

  10. Ukibe K, Katsuragi T, Tani Y, Takagi H (2008) Efficient screening for astaxanthin-overproducing mutants of the yeast Xanthophyllomyces dendrorhous by flow cytometry. FEMS Microbiol Lett 286(2):241–248

    Article  CAS  PubMed  Google Scholar 

  11. Carqueijeiro I et al (2016) Isolation of cells specialized in anticancer alkaloid metabolism by fluorescence-activated cell sorting. Plant Physiol 171(4):2371–2378

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wentz AE, Shusta EV (2007) A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins. Appl Environ Microbiol 73(4):1189–1198

    Article  CAS  PubMed  Google Scholar 

  13. Baret JC et al (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9(13):1850–1858

    Article  CAS  PubMed  Google Scholar 

  14. Brouzes E et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A 106(34):14195–14200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang BL et al (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol 32(5):473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang M et al (2015) Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proc Natl Acad Sci U S A 112(34):E4689–E4696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sjostrom SL et al (2014) High-throughput screening for industrial enzyme production hosts by droplet microfluidics. Lab Chip 14(4):806–813

    Article  CAS  PubMed  Google Scholar 

  18. Liu Z, Tyo KEJ, Martínez JL, Petranovic D, Nielsen J (2012) Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol Bioeng 109(5):1259–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McKenna A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang J, Wang JY, Wu YF (2012) An improved approach for accurate and efficient calling of structural variations with low-coverage sequence data. BMC Bioinformatics 13:S6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Huang, M., Joensson, H.N., Nielsen, J. (2018). High-Throughput Microfluidics for the Screening of Yeast Libraries. In: Jensen, M.K., Keasling, J.D. (eds) Synthetic Metabolic Pathways. Methods in Molecular Biology, vol 1671. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7295-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7295-1_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7294-4

  • Online ISBN: 978-1-4939-7295-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics