Skip to main content

Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR

  • Protocol
Synthetic Metabolic Pathways

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1671))

Abstract

Genome integration is a vital step for implementing large biochemical pathways to build a stable microbial cell factory. Although traditional strain construction strategies are well established for the model organism Saccharomyces cerevisiae, recent advances in CRISPR/Cas9-mediated genome engineering allow much higher throughput and robustness in terms of strain construction. In this chapter, we describe CasEMBLR, a highly efficient and marker-free genome engineering method for one-step integration of in vivo assembled expression cassettes in multiple genomic sites simultaneously. CasEMBLR capitalizes on the CRISPR/Cas9 technology to generate double-strand breaks in genomic loci, thus prompting native homologous recombination (HR) machinery to integrate exogenously derived homology templates. As proof-of-principle for microbial cell factory development, CasEMBLR was used for one-step assembly and marker-free integration of the carotenoid pathway from 15 exogenously supplied DNA parts into three targeted genomic loci. As a second proof-of-principle, a total of ten DNA parts were assembled and integrated in two genomic loci to construct a tyrosine production strain, and at the same time knocking out two genes. This new method complements and improves the field of genome engineering in S. cerevisiae by providing a more flexible platform for rapid and precise strain building.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li M, Borodina I (2015) Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res. doi:10.1111/1567-1364.12213

  2. Giaever G, Chu AM, Ni L et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391. doi:10.1038/nature00935

    Article  CAS  PubMed  Google Scholar 

  3. Lam FH, Ghaderi A, Fink GR, Stephanopoulos G (2014) Biofuels. Engineering alcohol tolerance in yeast. Science 346:71–75. doi:10.1126/science.1257859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang Z, Moo-Young M, Chisti Y (1996) Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnol Adv 14:401–435. doi:10.1016/S0734-9750(96)00033-X

    Article  CAS  PubMed  Google Scholar 

  5. Özaydin B, Burd H, Lee TS, Keasling JD (2013) Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab Eng 15:174–183. doi:10.1016/j.ymben.2012.07.010

    Article  PubMed  Google Scholar 

  6. Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16. doi:10.1093/nar/gkn991

    Article  PubMed  Google Scholar 

  7. Storici F, Lewis LK, Resnick MA (2001) In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol 19:773–776. doi:10.1038/90837

    Article  CAS  PubMed  Google Scholar 

  8. Storici F, Resnick MA (2003) Delitto perfetto targeted mutagenesis in yeast with oligonucleotides. Genet Eng 25:189–207

    CAS  Google Scholar 

  9. Kuijpers NGA, Chroumpi S, Vos T et al (2013) One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae. FEMS Yeast Res 13:769–781. doi:10.1111/1567-1364.12087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Siddiqui MS, Choksi A, Smolke CD (2014) A system for multilocus chromosomal integration and transformation-free selection marker rescue. FEMS Yeast Res 14:1171–1185. doi:10.1111/1567-1364.12210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wach A, Brachat A, Pöhlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808. doi:10.1002/yea.320101310

    Article  CAS  PubMed  Google Scholar 

  12. Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A 78:6354–6358. doi:10.1073/pnas.78.10.6354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35. doi:10.1016/0092-8674(83)90331-8

    Article  CAS  PubMed  Google Scholar 

  14. DiCarlo JE, Norville JE, Mali P et al (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. doi:10.1093/nar/gkt135

  15. Jakočiūnas T, Bonde I, Herrgård M et al (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222. doi:10.1016/j.ymben.2015.01.008

    Article  PubMed  Google Scholar 

  16. Bao Z, Xiao H, Liang J et al (2014) A homology integrated CRISPR-Cas (HI-CRISPR) system for one-step multi-gene disruptions in Saccharomyces cerevisiae. ACS Synth Biol. doi:10.1021/sb500255k

  17. Ryan OW, Skerker JM, Maurer MJ et al (2014) Selection of chromosomal DNA libraries using a multiplex CRISPR system. Elife:e03703. doi:10.7554/eLife.03703

  18. Verwaal R, Wang J, Meijnen JP et al (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:4342–4350. doi:10.1128/AEM.02759-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rodriguez A, Kildegaard KR, Li M et al (2015) Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31:181–188. doi:10.1016/j.ymben.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  20. Jakoči\( \overline{\mathrm{u}} \)nas T, Rajkumar AS, Zhang J et al (2015) CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae. ACS Synth Biol. doi:10.1021/acssynbio.5b00007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jakočiūnas, T., Jensen, E.D., Jensen, M.K., Keasling, J.D. (2018). Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR. In: Jensen, M.K., Keasling, J.D. (eds) Synthetic Metabolic Pathways. Methods in Molecular Biology, vol 1671. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7295-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7295-1_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7294-4

  • Online ISBN: 978-1-4939-7295-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics