Skip to main content

Coupling Radiotracer Experiments with Chemical Fractionation for the Estimation of Respiratory Fluxes

  • Protocol
  • First Online:
Plant Respiration and Internal Oxygen

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1670))

Abstract

Carbohydrates catabolized via respiratory processes are not only used for energy production but also for biosynthesis of cellular components including soluble molecules (sugars, amino acids, organic acids, and their derivatives) and insoluble macromolecules (proteins, starch, and cell wall). Radiotracer experiments using 14C-labeled glucose provide a global picture of the fate of respired carbon in the metabolic network. This method is based on a chemical fractionation of biomolecules in 14C-glucose fed plant materials and the subsequent determination of radioactivity in each fraction. Metabolic flux into each fraction can be estimated from the specific activity of the hexose phosphate pool. Here, we describe the procedure for glucose metabolism in potato tuber but similar protocols can be adopted for various plant organs and substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Umbarger HE (1978) Amino acid biosynthesis and its regulation. Annu Rev Biochem 47:532–606

    Article  CAS  PubMed  Google Scholar 

  2. Stitt M, Zeeman SC (2012) Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol 15:282–292

    Article  CAS  PubMed  Google Scholar 

  3. Kleczkowski LA, Geisler M, Ciereszko I, Johansson H (2004) UDP-glucose pyrophosphorylase. An old protein with new tricks. Plant Physiol 134:912–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Batista Silva W, Daloso DM, Fernie AR, Nunes-Nesi A, Araújo WL (2016) Can stable isotope mass spectrometry replace radiolabelled approaches in metabolic studies? Plant Sci 249:59–69

    Article  CAS  PubMed  Google Scholar 

  5. Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ (2001) Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta 212:250–263

    Article  CAS  PubMed  Google Scholar 

  6. Tsuji Y, Suzuki I, Shiraiwa Y (2009) Photosynthetic carbon assimilation in the coccolithophorid Emiliania huxleyi (Haptophyta): evidence for the predominant operation of the c3 cycle and the contribution of {beta}-carboxylases to the active anaplerotic reaction. Plant Cell Physiol 50:318–329

    Article  CAS  PubMed  Google Scholar 

  7. Debast S, Nunes-Nesi A, Hajirezaei MR, Hofmann J, Sonnewald U, Fernie AR, Börnke F (2011) Altering trehalose-6-phosphate content in transgenic potato tubers affects tuber growth and alters responsiveness to hormones during sprouting. Plant Physiol 156:1754–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Szecowka M, Osorio S, Obata T, Araújo WL, Rohrmann J, Nunes-Nesi A, Fernie AR (2012) Decreasing the mitochondrial synthesis of malate in potato tubers does not affect plastidial starch synthesis, suggesting that the physiological regulation of ADPglucose pyrophosphorylase is context dependent. Plant Physiol 160:2227–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Geigenberger P, Regierer B, Nunes-Nesi A, Leisse A, Urbanczyk-Wochniak E, Springer F, van Dongen JT, Kossmann J, Fernie AR (2005) Inhibition of de novo pyrimidine synthesis in growing potato tubers leads to a compensatory stimulation of the pyrimidine salvage pathway and a subsequent increase in biosynthetic performance. Plant Cell 17:2077–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Avin-Wittenberg T, Bajdzienko K, Wittenberg G, Alseekh S, Tohge T, Bock R, Giavalisco P, Fernie AR (2015) Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in Arabidopsis seedlings under carbon starvation. Plant Cell 27:306–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wormit A, Butt SM, Chairam I et al (2012) Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition. Plant Physiol 159:105–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dominguez PG, Frankel N, Mazuch J, Balbo I, Iusem N, Fernie AR, Carrari F (2013) ASR1 mediates glucose-hormone cross talk by affecting sugar trafficking in tobacco plants. Plant Physiol 161:1486–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Araújo WL, Tohge T, Osorio S, Lohse M, Balbo I, Krahnert I, Sienkiewicz-Porzucek A, Usadel B, Nunes-Nesi A, Fernie AR (2012) Antisense inhibition of the 2-oxoglutarate dehydrogenase complex in tomato demonstrates its importance for plant respiration and during leaf senescence and fruit maturation. Plant Cell 24:2328–2351

    Article  PubMed  PubMed Central  Google Scholar 

  14. Osorio S, Vallarino JG, Szecowka M, Ufaz S, Tzin V, Angelovici R, Galili G, Fernie AR (2013) Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation. Plant Physiol 161:628–643

    Article  CAS  PubMed  Google Scholar 

  15. Centeno DC, Osorio S, Nunes-Nesi A et al (2011) Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening. Plant Cell 23:162–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rees T, Bryant JA (1971) Effects of cycloheximide on protein synthesis and respiration in disks of carrot storage tissue. Phytochemistry 10:1183–1190

    Article  Google Scholar 

  17. Rees T, Fuller WA, Wright BW (1976) Pathways of carbohydrate oxidation during thermogenesis by the spadix of Arum maculatum. BBA-Gen Subjects 437:22–35

    Article  CAS  Google Scholar 

  18. Gibon Y, Blaesing OE, Hannemann J, Carillo P, Höhne M, Hendriks JHM, Palacios N, Cross J, Selbig J, Stitt M (2004) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Geigenberger P, Reimholz R, Geiger M, Merlo L, Canale V, Stitt M (1997) Regulation of sucrose and starch metabolism in potato tubers in response to short-term water deficit. Planta 201:502–518

    Article  CAS  Google Scholar 

  20. Geigenberger P, Fernie AR, Gibon Y, Christ M, Stitt M (2000) Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. Biol Chem 381:723–740

    Article  CAS  PubMed  Google Scholar 

  21. Scott P, Kruger NJ (1995) Influence of elevated fructose-2,6-Bisphosphate levels on starch mobilization in transgenic tobacco leaves in the dark. Plant Physiol 108:1569–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This study was supported by DFG (OB438 to T.O.), the European Commission’s Directorate General for Research within the 7th Framework Program (FP7/2007-2013 grant no. 270089 [MULTIBIOPRO] to T.O. and A.R.F.), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq to L.R.S), and Max-Planck Society (to A.R.F.). We thank Saleh Alseekh for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisdair R. Fernie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Obata, T., Rosado-Souza, L., Fernie, A.R. (2017). Coupling Radiotracer Experiments with Chemical Fractionation for the Estimation of Respiratory Fluxes. In: Jagadis Gupta, K. (eds) Plant Respiration and Internal Oxygen. Methods in Molecular Biology, vol 1670. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7292-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7292-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7291-3

  • Online ISBN: 978-1-4939-7292-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics