Skip to main content

Measurement of Tricarboxylic Acid Cycle Enzyme Activities in Plants

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1670))

Abstract

Mitochondria are vital cytoplasmic organelle of eukaryotic cells responsible for oxidative energy metabolism and the synthesis of intermediates utilized in various other metabolic pathways. The functions of mitochondrion are the oxidation of organic acids by the tricarboxylic acid (TCA) cycle and the synthesis of ATP by the oxidative phosphorylation in the mitochondrial electron transport chain. The TCA cycle is composed by a set of enzymes that are essential for optimal functioning of the primary carbon metabolism in plants. The activity of each TCA cycle enzyme in plants may vary according to cell type, plant tissue, stage of plant development, and the environment. Here, we describe current methods used for the determination of the TCA cycle enzyme activities in different plant tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261. doi:10.1016/j.pbi.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  2. Araújo WL, Nunes-Nesi A, Nikoloski Z et al (2012) Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant Cell Environ 35:1–21. doi:10.1111/j.1365-3040.2011.02332.x

  3. Millar AH, Whelan J, Soole KL et al (2011) Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol 62:79–104. doi:10.1146/annurev-arplant-042110-103857

    Article  CAS  PubMed  Google Scholar 

  4. Sweetlove LJ, Beard KFM, Nunes-Nesi A et al (2010) Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci 15:462–470. doi:10.1016/j.tplants.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  5. Schmidtmann E, König A-C, Orwat A et al (2014) Redox regulation of Arabidopsis mitochondrial citrate synthase. Mol Plant 7:156–169. doi:10.1093/mp/sst144

    Article  CAS  PubMed  Google Scholar 

  6. Daloso DM, Müller K, Obata T et al (2015) Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proc Natl Acad Sci 112. doi:10.1073/pnas.1424840112

  7. Bocobza SE, Malitsky S, Araújo WL et al (2013) Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis. Plant Cell 25:288–307. doi:10.1105/tpc.112.106385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Araújo WL, Nunes-Nesi A, Trenkamp S et al (2008) Inhibition of 2-oxoglutarate dehydrogenase in potato tuber suggests the enzyme is limiting for respiration and confirms its importance in nitrogen assimilation. Plant Physiol 148:1782–1796. doi:10.1104/pp.108.126219

    Article  PubMed  PubMed Central  Google Scholar 

  9. Henkes S, Sonnewald U, Badur R et al (2001) A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13(3):535–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bunik VI, Fernie AR (2009) Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem J 422(3):405–421

    Article  CAS  PubMed  Google Scholar 

  11. Tovar-Méndez A, Miernyk JA, Randall DD (2003) Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur J Biochem 270:1043–1049. doi:10.1046/j.1432-1033.2003.03469.x

    Article  PubMed  Google Scholar 

  12. Randall DD, Rubin PM, Fenko M (1977) Plant pyruvate dehydrogenase complex purification, characterization and regulation by metabolites and phosphorylation. Biochim Biophys Acta 485:336–349. doi:10.1016/0005-2744(77)90169-3

    Article  CAS  PubMed  Google Scholar 

  13. Randall DD, Miernyk J (2012) 10 the mitochondrial pyruvate dehydrogenase complex. Enzymes of primary. Metabolism 3:175

    Google Scholar 

  14. Gibon Y, Blaesing OE, Hannemann J et al (2004) A robot-based platform to measure multiple enzyme activities in arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325. doi:10.1105/tpc.104.025973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cox GF, Davies DD (1967) Nicotinamide–adenine dinucleotide-specific isocitrate dehydrogenase from pea mitochondria: purification and properties. Biochem J 105(2):729–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Araújo WL, Nunes-Nesi A, Osorio S et al (2011) Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid–mediated effect on stomatal aperture. Plant Cell 23:600–627. doi:10.1105/tpc.110.081224

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jenner HL, Winning BM, Millar AH et al (2001) NAD malic enzyme and the control of carbohydrate metabolism in potato tubers. Plant Physiol 126(3):1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Studart-Guimarães C, Gibon Y, Frankel N et al (2005) Identification and characterisation of the α and β subunits of succinyl coa ligase of tomato. Plant Mol Biol 59:781–791. doi:10.1007/s11103-005-1004-1

    Article  PubMed  Google Scholar 

  19. Voll LM, Zell MB, Engelsdorf T et al (2012) Loss of cytosolic NADP-malic enzyme 2 in Arabidopsis thaliana is associated with enhanced susceptibility to Colletotrichum higginsianum. New Phytol 195:189–202. doi:10.1111/j.1469-8137.2012.04129.x

    Article  CAS  PubMed  Google Scholar 

  20. Murcha MW, Whelan J (2015) Isolation of intact mitochondria from the model plant species Arabidopsis thaliana and Oryza sativa. In: Whelan J, Murcha WM (eds) Plant mitochondria: methods and protocols. Springer New York, New York, NY, pp 1–12. doi:10.1007/978-1-4939-2639-8_1

    Google Scholar 

  21. Sweetlove LJ, Taylor NL, Leaver CJ (2007) Isolation of intact, functional mitochondria from the model plant Arabidopsis thaliana. In: Leister D, Herrmann JM (eds) Mitochondria: practical protocols. Humana Press, Totowa, NJ, pp 125–136. doi:10.1007/978-1-59745-365-3_9

    Chapter  Google Scholar 

  22. Tronconi MA, Fahnenstich H, Gerrard Weehler MC et al (2008) Arabidopsis NAD-malic enzyme functions as a homodimer and heterodimer and has a major impact on nocturnal metabolism. Plant Physiol 146:1540–1552. doi:10.1104/pp.107.114975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq- to W.L.A.), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Max Planck Society to A.N.N. and W.L.A. Research fellowships granted by CNPq to A.N.N. and W.L.A. as well as scholarship granted by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) to R.P.O.G. are also gratefully acknowledged.

Conflict of interest : The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisdair R. Fernie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Omena-Garcia, R.P., Araújo, W.L., Gibon, Y., Fernie, A.R., Nunes-Nesi, A. (2017). Measurement of Tricarboxylic Acid Cycle Enzyme Activities in Plants. In: Jagadis Gupta, K. (eds) Plant Respiration and Internal Oxygen. Methods in Molecular Biology, vol 1670. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7292-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7292-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7291-3

  • Online ISBN: 978-1-4939-7292-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics