Skip to main content

Isolation and Structural Studies of Mitochondria from Pea Roots

  • Protocol
  • First Online:
Plant Respiration and Internal Oxygen

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1670))

Abstract

For structural and respiratory studies, isolation of intact and active mitochondria is essential. Here, we describe an isolation method which gave good yield and intact mitochondria from 2-week-old pea (Pisum sativum) roots grown hydroponically under standard growth conditions. We used Percoll gradient centrifugation for this isolation procedure. The yield of purified mitochondria was 50 μg/g FW. Isolated mitochondria maintained their structure which was observed by using MitoTracker green in confocal microscope and scanning electron microscopy (SEM). Intact mitochondria are clearly visible in SCM images. Taken together this isolation method can be used for physiological and microscopic studies on mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kowaltowski AJ (2000) Alternative mitochondrial functions in cell physiopathology: beyond ATP production. Braz J Med Biol Res 33(2):241–250

    Article  CAS  PubMed  Google Scholar 

  2. Kaiser WM, Gupta KJ, Planchet E (2006) Higher plant mitochondria as a source for NO. In: Lamattina L, Polacco JC (eds) Nitric oxide in plant growth, development and stress physiology. Springer, Berlin, pp 1–14

    Google Scholar 

  3. Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4(1):289–331

    Article  CAS  PubMed  Google Scholar 

  4. Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18:357–368

    Article  CAS  PubMed  Google Scholar 

  5. Bereiter-Hahn J, Voth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27:198–219

    Article  CAS  PubMed  Google Scholar 

  6. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252

    Article  CAS  PubMed  Google Scholar 

  7. Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  8. Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7(3):254–261

    Article  CAS  PubMed  Google Scholar 

  9. Rocha M, Licausi F, Araújo WL et al (2010) Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol 152(3):1501–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sweetlove LJ, Beard KF, Nunes-Nesi A et al (2010) Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci 15(8):462–470

    Article  CAS  PubMed  Google Scholar 

  11. Vercesi AE, Borecký J, Maia IDG et al (2006) Plant uncoupling mitochondrial proteins. Annu Rev Plant Biol 57:383–404

    Article  CAS  PubMed  Google Scholar 

  12. Sweetlove LJ, Lytovchenko A, Morgan M et al (2006) Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc Natl Acad Sci 103(51):19587–19592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rasmusson AG, Geisler DA, Møller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8(1):47–60

    Article  CAS  PubMed  Google Scholar 

  14. Woyda-Ploszczyca AM, Jarmuszkiewicz W (2017) The conserved regulation of mitochondrial uncoupling proteins: from unicellular eukaryotes to mammals. Biochim Biophys Act 1858:21–33

    Article  CAS  Google Scholar 

  15. Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8(11):546–553

    Article  CAS  PubMed  Google Scholar 

  16. Van Dongen JT, Gupta KJ, Ramírez-Aguilar SJ et al (2011) Regulation of respiration in plants: a role for alternative metabolic pathways. J Plant Physiol 168(12):1434–1443

    Article  PubMed  Google Scholar 

  17. Sunil B, Talla SK, Aswani V et al (2013) Optimization of photosynthesis by multiple metabolic pathways involving interorganelle interactions: resource sharing and ROS maintenance as the bases. Photosynth Res 117(1–3):61–71

    Article  CAS  PubMed  Google Scholar 

  18. Dutilleul C, Driscoll S, Cornic G et al (2003) Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients. Plant Physiol 131(1):264–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dutilleul C, Lelarge C, Prioul JL et al (2005) Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism. Plant Physiol 139(1):64–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garmier M, Carroll AJ, Delannoy E et al (2008) Complex I dysfunction redirects cellular and mitochondrial metabolism in Arabidopsis. Plant Physiol 148(3):1324–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kühn K, Obata T, Feher K et al (2015) Complete mitochondrial complex I deficiency induces an up-regulation of respiratory fluxes that is abolished by traces of functional complex I. Plant Physiol 168(4):1537–1549

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ishizaki K, Schauer N, Larson TR et al (2006) The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. Plant J 47(5):751–760

    Article  CAS  PubMed  Google Scholar 

  23. Ishizaki K, Larson TR, Schauer N et al (2005) The critical role of Arabidopsis electron-transfer flavoprotein: ubiquinone oxidoreductase during dark-induced starvation. Plant Cell 17(9):2587–2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen W, Wei Y, Dauk M et al (2003) Identification of a mitochondrial glycerol-3-phosphate dehydrogenase from Arabidopsis thaliana: evidence for a mitochondrial glycerol-3-phosphate shuttle in plants. FEBS Lett 536(1–3):92–96

    Article  CAS  PubMed  Google Scholar 

  25. Shen W, Wei Y, Dauk M et al (2006) Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. Plant Cell 18(2):422–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14(4):6805–6847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fiorani F, Umbach AL, Siedow JN (2005) The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. Plant Physiol 139(4):1795–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schwarzländer M, König AC, Sweetlove LJ et al (2012) The impact of impaired mitochondrial function on retrograde signalling: a meta-analysis of transcriptomic responses. J Exp Bot 63(4):1735–1750

    Article  PubMed  Google Scholar 

  29. Hartl M, Finkemeier I (2012) Plant mitochondrial retrograde signaling: post-translational modifications enter the stage. Front Plant Sci 3:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rhoads M, Subbaiah CC (2007) Mitochondrial retrograde regulation in plants. Mitochondrion 7:177–194

    Article  CAS  PubMed  Google Scholar 

  31. Johnson CM, Stout PR, Broyer TC et al (1957) Comparative chlorine requirements of different plant species. Plant Soil 8:337–353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.P.V. is currently funded by NPDF program of SERB, DST, India. We thank Aakanksha Wany for help in confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapuganti Jagadis Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Vishwakarma, A., Gupta, K.J. (2017). Isolation and Structural Studies of Mitochondria from Pea Roots. In: Jagadis Gupta, K. (eds) Plant Respiration and Internal Oxygen. Methods in Molecular Biology, vol 1670. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7292-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7292-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7291-3

  • Online ISBN: 978-1-4939-7292-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics