Skip to main content

In Vivo Reporters for Protein Half-Life

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1669))

Abstract

Determination of the general capacity of proteolytic activity of a certain cell or tissue type can be crucial for an assessment of various features of an organism’s growth and development and also for the optimization of biotechnological applications. Here, we describe the use of chimeric protein stability reporters that can be detected by standard laboratory techniques such as histological staining, selection using selective media or fluorescence microscopy. Dependent on the expression of the reporters due to the promoters applied, cell- and tissue-specific questions can be addressed. Here, we concentrate on methods which can be used for large-scale screening for protein stability changes rather than for detailed protein stability studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fishbain S, Inobe T, Israeli E, Chavali S, Yu H, Kago G, Babu MM, Matouschek A (2015) Sequence composition of disordered regions fine-tunes protein half-life. Nat Struct Mol Biol 22(3):214–221. https://doi.org/10.1038/nsmb.2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Takahashi K, Matouschek A, Inobe T (2015) Regulation of proteasomal degradation by modulating proteasomal initiation regions. ACS Chem Biol 10(11):2537–2543. https://doi.org/10.1021/acschembio.5b00554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yu H, Singh Gautam AK, Wilmington SR, Wylie D, Martinez-Fonts K, Kago G, Warburton M, Chavali S, Inobe T, Finkelstein IJ, Babu MM, Matouschek A (2016) Conserved sequence preferences contribute to substrate recognition by the proteasome. J Biol Chem 291(28):14526–14539. https://doi.org/10.1074/jbc.M116.727578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234(4773):179–186

    Article  CAS  PubMed  Google Scholar 

  5. White MD, Klecker M, Hopkinson R, Weits D, Mueller C, Naumann C, O Neill R, Wickens J, Yang J, Brooks-Bartlett JC, Garman EF, Grossmann TN, Dissmeyer N, Flashman E (2017) Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalyzed arginylation of N-end rule targets. Nat Commun 8:14690. https://doi.org/10.1101/069336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garzon M, Eifler K, Faust A, Scheel H, Hofmann K, Koncz C, Yephremov A, Bachmair A (2007) PRT6/At5g02310 encodes an Arabidopsis ubiquitin ligase of the N-end rule pathway with arginine specificity and is not the CER3 locus. FEBS Lett 581(17):3189–3196. https://doi.org/10.1016/j.febslet.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  7. Stary S, Yin XJ, Potuschak T, Schlogelhofer P, Nizhynska V, Bachmair A (2003) PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues. Plant Physiol 133(3):1360–1366. https://doi.org/10.1104/pp.103.029272 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong H, Dumenil J, Lu FH, Na L, Vanhaeren H, Naumann C, Klecker M, Prior R, Smith C, McKenzie N, Saalbach G, Chen L, Xia T, Gonzalez N, Seguela M, Inze D, Dissmeyer N, Li Y, Bevan MW (2017) Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Genes Dev. https://doi.org/10.1101/gad.292235.116

  9. Mot AC, Prell E, Klecker M, Naumann C, Faden F, Westermann B, Dissmeyer N (2017) Real-time detection of N-end rule-mediated ubiquitination via fluorescently labeled substrate probes. New Phytol. https://doi.org/10.1111/nph.14497

  10. Kim HK, Kim RR, Oh JH, Cho H, Varshavsky A, Hwang CS (2014) The N-terminal methionine of cellular proteins as a degradation signal. Cell 156(1–2):158–169. https://doi.org/10.1016/j.cell.2013.11.031

    Article  CAS  PubMed  Google Scholar 

  11. Shemorry A, Hwang CS, Varshavsky A (2013) Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol Cell 50(4):540–551. https://doi.org/10.1016/j.molcel.2013.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen SJ, Wu X, Wadas B, Oh JH, Varshavsky A (2017) An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 355(6323). https://doi.org/10.1126/science.aal3655

  13. Varshavsky A (2004) ‘Spalog’ and ‘sequelog’: neutral terms for spatial and sequence similarity. Curr Biol 14(5):R181–R183. https://doi.org/10.1016/j.cub.2004.02.014

    Article  CAS  PubMed  Google Scholar 

  14. Bradshaw RA, Brickey WW, Walker KW (1998) N-terminal processing: the methionine aminopeptidase and N alpha-acetyl transferase families. Trends Biochem Sci 23(7):263–267

    Article  CAS  PubMed  Google Scholar 

  15. Boissel JP, Kasper TJ, Shah SC, Malone JI, Bunn HF (1985) Amino-terminal processing of proteins: hemoglobin South Florida, a variant with retention of initiator methionine and N alpha-acetylation. Proc Natl Acad Sci U S A 82(24):8448–8452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang S, Elliott RC, Liu PS, Koduri RK, Blair LC, Bryan KM, Ghosh-Dastidar P, Einarson B, Kendall RL (1987) Specificity of cotranslational amino-terminal processing of proteins in yeast. Biochemistry 26(25):8242–8246. https://doi.org/10.1021/bi00399a033

    Article  CAS  PubMed  Google Scholar 

  17. Bonissone S, Gupta N, Romine M, Bradshaw RA, Pevzner PA (2013) N-Terminal protein processing: a comparative proteogenomic analysis. Mol Cell Proteomics 12(1):14–28. https://doi.org/10.1074/mcp.M112.019075

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sherman F, Stewart JW, Tsunasawa S (1985) Methionine or not methionine at the beginning of a protein. Bioessays 3(1):27–31. https://doi.org/10.1002/bies.950030108

    Article  CAS  PubMed  Google Scholar 

  19. Davydov IV, Varshavsky A (2000) RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J Biol Chem 275(30):22931–22941. https://doi.org/10.1074/jbc.M001605200

    Article  CAS  PubMed  Google Scholar 

  20. Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, Holdsworth MJ (2011) Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479(7373):415–418. https://doi.org/10.1038/nature10534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Naumann C, Mot AC, Dissmeyer N (2016) Generation of artificial N-end rule substrate proteins in vivo and in vitro. Methods Mol Biol 1450:55–83. https://doi.org/10.1007/978-1-4939-3759-2_6

    Article  PubMed  Google Scholar 

  22. Gonda DK, Bachmair A, Wunning I, Tobias JW, Lane WS, Varshavsky A (1989) Universality and structure of the N-end rule. J Biol Chem 264(28):16700–16712

    CAS  PubMed  Google Scholar 

  23. Gilchrist CA, Gray DA, Baker RT (1997) A ubiquitin-specific protease that efficiently cleaves the ubiquitin-proline bond. J Biol Chem 272(51):32280–32285

    Article  CAS  PubMed  Google Scholar 

  24. Baker RT, Catanzariti AM, Karunasekara Y, Soboleva TA, Sharwood R, Whitney S, Board PG (2005) Using deubiquitylating enzymes as research tools. Methods Enzymol 398:540–554. https://doi.org/10.1016/S0076-6879(05)98044-0

    Article  CAS  PubMed  Google Scholar 

  25. Catanzariti AM, Soboleva TA, Jans DA, Board PG, Baker RT (2004) An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci 13(5):1331–1339. https://doi.org/10.1110/ps.04618904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baker RT, Smith SA, Marano R, McKee J, Board PG (1994) Protein expression using cotranslational fusion and cleavage of ubiquitin. Mutagenesis of the glutathione-binding site of human Pi class glutathione S-transferase. J Biol Chem 269(41):25381–25386

    CAS  PubMed  Google Scholar 

  27. Piatkov K, Graciet E, Varshavsky A (2013) Ubiquitin reference technique and its use in ubiquitin-lacking prokaryotes. PLoS One 8(6):e67952. https://doi.org/10.1371/journal.pone.0067952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmidt R, Zahn R, Bukau B, Mogk A (2009) ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway. Mol Microbiol 72(2):506–517. https://doi.org/10.1111/j.1365-2958.2009.06666.x

    Article  CAS  PubMed  Google Scholar 

  29. Varshavsky A (2005) Ubiquitin fusion technique and related methods. Methods Enzymol 399:777–799. https://doi.org/10.1016/S0076-6879(05)99051-4

    Article  CAS  PubMed  Google Scholar 

  30. Levy F, Johnsson N, Rumenapf T, Varshavsky A (1996) Using ubiquitin to follow the metabolic fate of a protein. Proc Natl Acad Sci U S A 93(10):4907–4912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Turner GC, Varshavsky A (2000) Detecting and measuring cotranslational protein degradation in vivo. Science 289(5487):2117–2120

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki T, Varshavsky A (1999) Degradation signals in the lysine-asparagine sequence space. EMBO J 18(21):6017–6026. https://doi.org/10.1093/emboj/18.21.6017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kapust RB, Tozser J, Copeland TD, Waugh DS (2002) The P1′ specificity of tobacco etch virus protease. Biochem Biophys Res Commun 294(5):949–955. https://doi.org/10.1016/s0006-291x(02)00574-0

    Article  CAS  PubMed  Google Scholar 

  34. Renicke C, Spadaccini R, Taxis C (2013) A tobacco etch virus protease with increased substrate tolerance at the P1′ position. PLoS One 8(6):e67915. https://doi.org/10.1371/journal.pone.0067915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bachmair A, Varshavsky A (1989) The degradation signal in a short-lived protein. Cell 56(6):1019–1032. 0092-8674(89)90635-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  36. Detterbeck S, Morandini P, Wetterauer B, Bachmair A, Fischer K, MacWilliams HK (1994) The ‘prespore-like cells’ of Dictyostelium have ceased to express a prespore gene: analysis using short-lived beta-galactosidases as reporters. Development 120(10):2847–2855

    CAS  PubMed  Google Scholar 

  37. Bachmair A, Becker F, Schell J (1993) Use of a reporter transgene to generate Arabidopsis mutants in ubiquitin-dependent protein degradation. Proc Natl Acad Sci U S A 90(2):418–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Potuschak T, Stary S, Schlogelhofer P, Becker F, Nejinskaia V, Bachmair A (1998) PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc Natl Acad Sci U S A 95(14):7904–7908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park EC, Finley D, Szostak JW (1992) A strategy for the generation of conditional mutations by protein destabilization. Proc Natl Acad Sci U S A 89(4):1249–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hackett EA, Esch RK, Maleri S, Errede B (2006) A family of destabilized cyan fluorescent proteins as transcriptional reporters in S. cerevisiae. Yeast 23(5):333–349. https://doi.org/10.1002/yea.1358

    Article  CAS  PubMed  Google Scholar 

  41. Houser JR, Ford E, Chatterjea SM, Maleri S, Elston TC, Errede B (2012) An improved short-lived fluorescent protein transcriptional reporter for Saccharomyces cerevisiae. Yeast 29(12):519–530. https://doi.org/10.1002/yea.2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Worley CK, Ling R, Callis J (1998) Engineering in vivo instability of firefly luciferase and Escherichia coli beta-glucuronidase in higher plants using recognition elements from the ubiquitin pathway. Plant Mol Biol 37(2):337–347

    Article  CAS  PubMed  Google Scholar 

  43. Graciet E, Mesiti F, Wellmer F (2010) Structure and evolutionary conservation of the plant N-end rule pathway. Plant J 61(5):741–751. https://doi.org/10.1111/j.1365-313X.2009.04099.x

    Article  CAS  PubMed  Google Scholar 

  44. Dohmen RJ, Wu P, Varshavsky A (1994) Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263(5151):1273–1276

    Article  CAS  PubMed  Google Scholar 

  45. Dohmen RJ, Varshavsky A (2005) Heat-inducible degron and the making of conditional mutants. Methods Enzymol 399:799–822. https://doi.org/10.1016/S0076-6879(05)99052-6

    Article  CAS  PubMed  Google Scholar 

  46. Faden F, Ramezani T, Mielke S, Almudi I, Nairz K, Froehlich MS, Hockendorff J, Brandt W, Hoehenwarter W, Dohmen RJ, Schnittger A, Dissmeyer N (2016) Phenotypes on demand via switchable target protein degradation in multicellular organisms. Nat Commun 7:12202. https://doi.org/10.1038/ncomms12202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Groot RJ, Rumenapf T, Kuhn RJ, Strauss EG, Strauss JH (1991) Sindbis virus RNA polymerase is degraded by the N-end rule pathway. Proc Natl Acad Sci U S A 88(20):8967–8971

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tasaki T, Mulder LC, Iwamatsu A, Lee MJ, Davydov IV, Varshavsky A, Muesing M, Kwon YT (2005) A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol Cell Biol 25(16):7120–7136. https://doi.org/10.1128/MCB.25.16.7120-7136.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Apel W, Schulze WX, Bock R (2010) Identification of protein stability determinants in chloroplasts. Plant J 63(4):636–650. https://doi.org/10.1111/j.1365-313X.2010.04268.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pakrasi HB, De Ciechi P, Whitmarsh J (1991) Site directed mutagenesis of the heme axial ligands of cytochrome b559 affects the stability of the photosystem II complex. EMBO J 10(7):1619–1627

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rao H, Uhlmann F, Nasmyth K, Varshavsky A (2001) Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410(6831):955–959. https://doi.org/10.1038/35073627

    Article  CAS  PubMed  Google Scholar 

  52. Choi WS, Jeong BC, Joo YJ, Lee MR, Kim J, Eck MJ, Song HK (2010) Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat Struct Mol Biol 17(10):1175–1181. https://doi.org/10.1038/nsmb.1907

    Article  CAS  PubMed  Google Scholar 

  53. Takemoto D, Jones DA (2005) Membrane release and destabilization of Arabidopsis RIN4 following cleavage by Pseudomonas syringae AvrRpt2. Mol Plant Microbe Interact 18(12):1258–1268. https://doi.org/10.1094/MPMI-18-1258

    Article  CAS  PubMed  Google Scholar 

  54. Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LA, Perata P, van Dongen JT (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479(7373):419–422. https://doi.org/10.1038/nature10536

    Article  CAS  PubMed  Google Scholar 

  55. Gibbs DJ, Md Isa N, Movahedi M, Lozano-Juste J, Mendiondo GM, Berckhan S, Marin de la Rosa N, Vicente Conde J, Sousa Correia C, Pearce SP, Bassel GW, Hamali B, Talloji P, Tome DF, Coego A, Beynon J, Alabadi D, Bachmair A, Leon J, Gray JE, Theodoulou FL, Holdsworth MJ (2014) Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol Cell 53(3):369–379. https://doi.org/10.1016/j.molcel.2013.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dissmeyer N, Weimer AK, Pusch S, De Schutter K, Alvim Kamei CL, Nowack MK, Novak B, Duan GL, Zhu YG, De Veylder L, Schnittger A (2009) Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. Plant Cell 21(11):3641–3654. https://doi.org/10.1105/tpc.109.070417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dissmeyer N, Nowack MK, Pusch S, Stals H, Inze D, Grini PE, Schnittger A (2007) T-loop phosphorylation of Arabidopsis CDKA;1 is required for its function and can be partially substituted by an aspartate residue. Plant Cell 19(3):972–985. https://doi.org/10.1105/tpc.107.050401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fang G, Yu H, Kirschner MW (1999) Control of mitotic transitions by the anaphase-promoting complex. Philos Trans R Soc Lond B Biol Sci 354(1389):1583–1590. https://doi.org/10.1098/rstb.1999.0502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pesin JA, Orr-Weaver TL (2008) Regulation of APC/C activators in mitosis and meiosis. Annu Rev Cell Dev Biol 24:475–499. https://doi.org/10.1146/annurev.cellbio.041408.115949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Genschik P, Criqui MC, Parmentier Y, Derevier A, Fleck J (1998) Cell cycle-dependent proteolysis in plants. Identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor mg132. Plant Cell 10(12):2063–2076

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jakoby MJ, Weinl C, Pusch S, Kuijt SJ, Merkle T, Dissmeyer N, Schnittger A (2006) Analysis of the subcellular localization, function, and proteolytic control of the Arabidopsis cyclin-dependent kinase inhibitor ICK1/KRP1. Plant Physiol 141(4):1293–1305. https://doi.org/10.1104/pp.106.081406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schnittger A, Schobinger U, Stierhof YD, Hulskamp M (2002) Ectopic B-type cyclin expression induces mitotic cycles in endoreduplicating Arabidopsis trichomes. Curr Biol 12(5):415–420

    Article  CAS  PubMed  Google Scholar 

  63. King RW, Deshaies RJ, Peters JM, Kirschner MW (1996) How proteolysis drives the cell cycle. Science 274(5293):1652–1659

    Article  CAS  PubMed  Google Scholar 

  64. Bernhardt A, Lechner E, Hano P, Schade V, Dieterle M, Anders M, Dubin MJ, Benvenuto G, Bowler C, Genschik P, Hellmann H (2006) CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant J 47(4):591–603. https://doi.org/10.1111/j.1365-313X.2006.02810.x

    Article  CAS  PubMed  Google Scholar 

  65. Weingartner M, Criqui MC, Meszaros T, Binarova P, Schmit AC, Helfer A, Derevier A, Erhardt M, Bogre L, Genschik P (2004) Expression of a nondegradable cyclin B1 affects plant development and leads to endomitosis by inhibiting the formation of a phragmoplast. Plant Cell 16(3):643–657. https://doi.org/10.1105/tpc.020057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kurzawa L, Morris MC (2010) Cell-cycle markers and biosensors. ChemBioChem 11(8):1037–1047. https://doi.org/10.1002/cbic.200900729

    Article  CAS  PubMed  Google Scholar 

  67. Menges M, Hennig L, Gruissem W, Murray JA (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277(44):41987–42002. https://doi.org/10.1074/jbc.M207570200

    Article  CAS  PubMed  Google Scholar 

  68. Easwaran HP, Leonhardt H, Cardoso MC (2005) Cell cycle markers for live cell analyses. Cell Cycle 4(3):453–455. https://doi.org/10.4161/cc.4.3.1525

    Article  CAS  PubMed  Google Scholar 

  69. Leonhardt H, Rahn HP, Weinzierl P, Sporbert A, Cremer T, Zink D, Cardoso MC (2000) Dynamics of DNA replication factories in living cells. J Cell Biol 149(2):271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsmuller AB, Kanaar R, Vermeulen W (2005) Nuclear dynamics of PCNA in DNA replication and repair. Mol Cell Biol 25(21):9350–9359. https://doi.org/10.1128/MCB.25.21.9350-9359.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kisielewska J, Lu P, Whitaker M (2005) GFP-PCNA as an S-phase marker in embryos during the first and subsequent cell cycles. Biol Cell 97(3):221–229. https://doi.org/10.1042/BC20040093

    Article  CAS  PubMed  Google Scholar 

  72. Gu J, Xia X, Yan P, Liu H, Podust VN, Reynolds AB, Fanning E (2004) Cell cycle-dependent regulation of a human DNA helicase that localizes in DNA damage foci. Mol Biol Cell 15(7):3320–3332. https://doi.org/10.1091/mbc.E04-03-0227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132(3):487–498. https://doi.org/10.1016/j.cell.2007.12.033

    Article  CAS  PubMed  Google Scholar 

  74. Hahn AT, Jones JT, Meyer T (2009) Quantitative analysis of cell cycle phase durations and PC12 differentiation using fluorescent biosensors. Cell Cycle 8(7):1044–1052. https://doi.org/10.4161/cc.8.7.8042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wilmington SR, Matouschek A (2016) An inducible system for rapid degradation of specific cellular proteins using proteasome adaptors. PLoS One 11(4):e0152679. https://doi.org/10.1371/journal.pone.0152679

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhou P (2004) Determining protein half-lives. Methods Mol Biol 284:67–77. https://doi.org/10.1385/1-59259-816-1:067

    CAS  PubMed  Google Scholar 

  77. Gilkerson J, Tam R, Zhang A, Dreher K, Callis J (2016) Cycloheximide assays to measure protein degradation in vivo in plants. BioProtocol 6(17). 10.21769/BioProtoc.1919

  78. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim KW, Franceschi VR, Davin LB, Lewis NG (2006) Beta-glucuronidase as reporter gene: advantages and limitations. Methods Mol Biol 323:263–273. https://doi.org/10.1385/1-59745-003-0:263

    CAS  PubMed  Google Scholar 

  80. Dissmeyer N, Schnittger A (2011) Use of phospho-site substitutions to analyze the biological relevance of phosphorylation events in regulatory networks. Methods Mol Biol 779:93–138. https://doi.org/10.1007/978-1-61779-264-9_6

    Article  CAS  PubMed  Google Scholar 

  81. Harrison SJ, Mott EK, Parsley K, Aspinall S, Gray JC, Cottage A (2006) A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods 2:19. https://doi.org/10.1186/1746-4811-2-19

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant for setting up the junior research group of the ScienceCampus Halle – Plant-based Bioeconomy to N.D., a Ph.D. scholarship from the DAAD (Deutscher Akademischer Austauschdienst) to P.R., by DI 1794/3-1 of the German Research Foundation (DFG) to N.D., and by grant LSP-TP2-1 of the Research Focus Program “Molecular Biosciences as a Motor for a Knowledge-Based Economy” from the European Regional Development Fund (EFRE) to N.D. Financial support came from the Leibniz Association, the state of Saxony-Anhalt, the DFG Graduate Training Center GRK1026 “Conformational Transitions in Macromolecular Interactions” at Halle, and the Leibniz Institute of Plant Biochemistry (IPB) at Halle, Germany. N.D. lab is the participant of the European Cooperation in Science and Technology (COST) Action BM1307—“European network to integrate research on intracellular proteolysis pathways in health and disease (PROTEOSTASIS)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Dissmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Reichman, P., Dissmeyer, N. (2017). In Vivo Reporters for Protein Half-Life. In: Schmidt, A. (eds) Plant Germline Development. Methods in Molecular Biology, vol 1669. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7286-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7286-9_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7285-2

  • Online ISBN: 978-1-4939-7286-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics