Skip to main content

Transgenic Reproductive Cell Ablation

  • Protocol
  • First Online:
Plant Germline Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1669))

  • 3043 Accesses

Abstract

Numerous cell ablation technologies are available and have been used in reproductive tissues, particularly for male tissues and cells. The importance of ablation of reproductive tissues is toward a fundamental understanding reproductive tissue development and fertilization, as well as, in developing sterility lines important to breeding strategies. Here, we describe techniques for developing ablation lines for both male and female reproductive cells. Also discussed are techniques for analysis, quality control, maintenance, and the lessening of pleiotropism in such lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song X, Yuan L, Sundaresan V (2014) Antipodal cells persist through fertilization in the female gametophyte of Arabidopsis. Plant Reprod 27(4):197–203

    Article  PubMed  Google Scholar 

  2. Koltunow AM, Johnson SD, Rodrigues J, Okada T, Hu Y, Tsuchiya T, Wilson S, Fletcher P, Ito K, Suzuki G (2011) Sexual reproduction is the default mode in apomictic Hieracium subgenus Pilosella, in which two dominant loci function to enable apomixis. Plant J 66(5):890–902

    Article  CAS  PubMed  Google Scholar 

  3. Goldberg RB, Sanders PM, Beals TP (1995) A novel cell-ablation strategy for studying plant development. Philos Trans R Soc Lond B Biol Sci 350(1331):5–17

    Article  CAS  PubMed  Google Scholar 

  4. Roberts MR, Boyes E, Scott RJ (1995) An investigation of the role of the anther tapetum during microspore development using genetic cell ablation. Sex Plant Reprod 8(5):299–307

    Article  Google Scholar 

  5. Mariani C, Beuckeleer MD, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347(6295):737

    Article  CAS  Google Scholar 

  6. Williams ME, Leemans J, Michiels F (1997) Male sterility through recombinant DNA technology. In: Shivanna K, Sawhney V (eds) Pollen biotechnology for crops production and improvement. Cambridge University Press, Cambridge, pp 237–258

    Chapter  Google Scholar 

  7. Wu Y, Fox TW, Trimnell MR, Wang L, Xu R, Cigan AM, Huffman GA, Garnaat CW, Hershey H, Albertsen MC (2016) Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J 14(3):1046–1054

    Article  CAS  PubMed  Google Scholar 

  8. Thorsness MK, Kandasamy MK, Nasrallah ME, Nasrallah JB (1993) Genetic ablation of floral cells in Arabidopsis. Plant Cell 5(3):253–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gressel J (2015) Dealing with transgene flow of crop protection traits from crops to their relatives. Pest Manag Sci 71(5):658–667

    Article  CAS  PubMed  Google Scholar 

  10. Kobayashi K, Munemura I, Hinata K, Yamamura S (2006) Bisexual sterility conferred by the differential expression of Barnase and Barstar: a simple and efficient method of transgene containment. Plant Cell Rep 25(12):1347–1354

    Article  CAS  PubMed  Google Scholar 

  11. Huang J, Smith AR, Zhang T, Zhao D (2016) Creating completely both male and female sterile plants by specifically ablating microspore and megaspore mother cells. Front Plant Sci 7(30). doi:10.3389/fpls.2016.00030

  12. Gardner N, Felsheim R, Smith AG (2009) Production of male-and female-sterile plants through reproductive tissue ablation. J Plant Physiol 166(8):871–881

    Article  CAS  PubMed  Google Scholar 

  13. Lawit SJ, Chamberlin MA, Agee A, Caswell ES, Albertsen MC (2013) Transgenic manipulation of plant embryo sacs tracked through cell-type-specific fluorescent markers: cell labeling, cell ablation, and adventitious embryos. Plant Reprod 26(2):125–137

    Article  PubMed  Google Scholar 

  14. Cigan AM, Lawit SJ (2012) Method to screen plants for genetic elements inducing parthenogenesis in plants. US Patent application no. 13/445,276

    Google Scholar 

  15. Chamberlin MA, Lawit SJ (2017) Development and observation of mature megagametophyte cell-specific fluorescent markers. In: Schmidt A (ed) Plant Germline Development, vol. 1669, Methods in Molecular Biology. Springer, New York, NY

    Google Scholar 

  16. Burgess DG, Ralston EJ, Hanson WG, Heckert M, Ho M, Jenq T, Palys JM, Tang K, Gutterson N (2002) A novel, two-component system for cell lethality and its use in engineering nuclear male-sterility in plants. Plant J 31(1):113–125

    Article  CAS  PubMed  Google Scholar 

  17. Unger E, Betz S, Xu R-j, Cigan AM (2001) Selection and orientation of adjacent genes influences DAM-mediated male sterility in transformed maize. Transgenic Res 10(5):409–422

    Article  CAS  PubMed  Google Scholar 

  18. Beals TP, Goldberg RB (1997) A novel cell ablation strategy blocks tobacco anther dehiscence. Plant Cell 9(9):1527–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Twell D (1992) Use of a nuclear-targeted β-glucuronidase fusion protein to demonstrate vegetative cell-specific gene expression in developing pollen. Plant J 2(6):887–892

    Article  CAS  Google Scholar 

  20. Brownfield L, Hafidh S, Borg M, Sidorova A, Mori T, Twell D (2009) A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet 5(3):e1000430

    Article  PubMed  PubMed Central  Google Scholar 

  21. Steffen JG, Kang IH, Macfarlane J, Drews GN (2007) Identification of genes expressed in the Arabidopsis female gametophyte. Plant J 51(2):281–292

    Article  CAS  PubMed  Google Scholar 

  22. Koszegi D, Johnston AJ, Rutten T, Czihal A, Altschmied L, Kumlehn J, Wust SE, Kirioukhova O, Gheyselinck J, Grossniklaus U, Baumlein H (2011) Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant J 67(2):280–291

    Article  PubMed  Google Scholar 

  23. Johnston A, Meier P, Gheyselinck J, Wuest S, Federer M, Schlagenhauf E, Becker J, Grossniklaus U (2007) Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte. Genome Biol 8(10):R204

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ohnishi T, Takanashi H, Mogi M, Takahashi H, Kikuchi S, Yano K, Okamoto T, Fujita M, Kurata N, Tsutsumi N (2011) Distinct gene expression profiles in egg and synergid cells of rice as revealed by cell type-specific microarrays. Plant Physiol 155(2):881–891

    Article  CAS  PubMed  Google Scholar 

  25. Sánchez-León N, Arteaga-Vázquez M, Alvarez-Mejía C, Mendiola-Soto J, Durán-Figueroa N, Rodríguez-Leal D, Rodríguez-Arévalo I, García-Campayo V, García-Aguilar M, Olmedo-Monfil V, Arteaga-Sánchez M, Martínez de la Vega O, Nobuta K, Vemaraju K, Meyers BC, Vielle-Calzada J-P (2012) Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing. J Exp Bot 63(10):3829–3842

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenführer J, von Mering C, Grossniklaus U (2010) Arabidopsis female gametophyte Gene expression map reveals similarities between plant and animal gametes. Curr Biol 20(6):506–512

    Article  CAS  PubMed  Google Scholar 

  27. Yang W, Jefferson RA, Huttner E, Moore JM, Gagliano WB, Grossniklaus U (2005) An egg apparatus-specific enhancer of Arabidopsis, identified by enhancer detection. Plant Physiol 139(3):1421–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu H-J, Hogan P, Sundaresan V (2005) Analysis of the female gametophyte Transcriptome of Arabidopsis by comparative expression profiling. Plant Physiol 139(4):1853–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Green M, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  30. Chen W, Tulsieram L (2015) Microprojectile bombardment transformation of Brassica. US Patent 8,993,845

    Google Scholar 

  31. Li Z, Xing A, Moon BP, McCardell RP, Mills K, Falco SC (2009) Site-specific integration of transgenes in soybean via recombinase-mediated DNA cassette exchange. Plant Physiol 151(3):1087–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cho M-J, Wu E, Kwan J, Yu M, Banh J, Linn W, Anand A, Li Z, TeRonde S, Register JC III (2014) Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep 33(10):1767–1777

    Article  CAS  PubMed  Google Scholar 

  33. Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T, Zhen S, Chu U, Cho M-J, Zhao Z-Y (2014) Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell Dev Biol Plant 50(1):9–18

    Article  PubMed  Google Scholar 

  34. Rutley N, Twell D (2015) A decade of pollen transcriptomics. Plant Reprod 28(2):73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Czako M, An G (1991) Expression of DNA coding for diphtheria toxin chain a is toxic to plant cells. Plant Physiol 95(3):687–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cigan AM, Albertsen MC (1997) Transgenic plants and DNA comprising anther specific promoter 5126 and gene to achieve male sterility. US Patent 5,689,051

    Google Scholar 

  37. Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet MGG 220(2):245–250

    Article  CAS  PubMed  Google Scholar 

  38. Hartley RW (1988) Barnase and barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202(4):913–915

    Article  CAS  PubMed  Google Scholar 

  39. Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123(3):895–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was developed at and supported by DuPont Pioneer. We thank Katherine Thilges, Eric Caswell, and others for technical support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shai J. Lawit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lawit, S.J., Chamberlin, M.A. (2017). Transgenic Reproductive Cell Ablation. In: Schmidt, A. (eds) Plant Germline Development. Methods in Molecular Biology, vol 1669. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7286-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7286-9_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7285-2

  • Online ISBN: 978-1-4939-7286-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics