Skip to main content

Use of the Cas9 Orthologs from Streptococcus thermophilus and Staphylococcus aureus for Non-Homologous End-Joining Mediated Site-Specific Mutagenesis in Arabidopsis thaliana

  • Protocol
  • First Online:
Plant Germline Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1669))

Abstract

Since the discovery of the CRISPR/Cas system and its in vivo application for site-specific targeted mutagenesis, this technique is wildly used in a great variety of organisms, such as many plant species. Commonly used for this application is the Cas9 enzyme from Streptococcus pyogenes. Here, we describe the application of two Cas9 orthologs from Streptococcus thermophilus and Staphylococcus aureus for targeted non-homologous end-joining mediated mutagenesis in Arabidopsis thaliana. With both orthologs, we could show efficient inheritance of the induced mutations. As both Cas9 orthologs are smaller in size than the enzyme of S. pyogenes and as the Protospacer adjacent motifs (PAMs) differ between all orthologs, they are attractive alternative tools for genome engineering in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi:10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

  2. Cong RFA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi:10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838. doi:10.1038/nbt.2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. doi:10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schiml S, Puchta H (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods 12:8. doi:10.1186/s13007-016-0103-0

    Article  PubMed  PubMed Central  Google Scholar 

  6. Friedland AE, Baral R, Singhal P et al (2015) Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 16:257. doi:10.1186/s13059-015-0817-8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ran FA, Cong L, Yan WX et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191. doi:10.1038/nature14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. doi:10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fonfara I, Le Rhun A, Chylinski K et al (2014) Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42(4):2577–2590. doi:10.1093/nar/gkt1074

    Article  CAS  PubMed  Google Scholar 

  10. Louwen R, Staals RHJ, Endtz HP et al (2014) The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol Mol Biol Rev 78(1):74–88. doi:10.1128/MMBR.00039-13

    Article  PubMed  PubMed Central  Google Scholar 

  11. Haeussler M, Concordet J (2016) Genome editing with CRISPR-Cas9: can it get any better? J Genet Genomics 43(5):239–250. doi:10.1016/j.jgg.2016.04.008

    Article  PubMed  Google Scholar 

  12. Chylinski K, Le Rhun A, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10(5):726–737. doi:10.4161/rna.24321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Steinert J, Schiml S, Fauser F et al (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J 84(6):1295–1305. doi:10.1111/tpj.13078

    Article  CAS  PubMed  Google Scholar 

  14. Chen B, Hu J, Almeida R et al (2016) Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res 44(8):e75. doi:10.1093/nar/gkv1533

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ma H, Naseri A, Reyes-Gutierrez P et al (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci U S A 112(10):3002–3007. doi:10.1073/pnas.1420024112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karvelis T, Gasiunas G, Young J et al (2015) Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol 16(1):253. doi:10.1186/s13059-015-0818-7

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kaya H, Mikami M, Endo A et al (2016) Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Sci Rep 6:26871. doi:10.1038/srep26871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Puchta H (2015) Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant J 87(1):5–15. doi:10.1111/tpj.13100

    Article  Google Scholar 

  19. Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80(6):1139–1150. doi:10.1111/tpj.12704

    Article  CAS  PubMed  Google Scholar 

  20. Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79(2):348–359. doi:10.1111/tpj.12554

    Article  CAS  PubMed  Google Scholar 

  21. Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25(6):989–994

    Article  CAS  PubMed  Google Scholar 

  22. Esvelt KM, Mali P, Braff JL et al (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10(11):1116–1121. doi:10.1038/nmeth.2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Stewart J (2000) Economical and rapid method for extraction cotton genomic DNA. J Cotton Sci 2000(4):193–201

    Google Scholar 

  25. Hill JT, Demarest BL, Bisgrove BW et al (2014) Poly peak parser: method and software for identification of unknown indels using sanger sequencing of polymerase chain reaction products. Dev Dyn 243(12):1632–1636. doi:10.1002/dvdy.24183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The work on our RNA-guided Cas9 vectors was funded by the European Research Council (Advanced Grant “COMREC”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Puchta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Steinert, J., Schmidt, C., Puchta, H. (2017). Use of the Cas9 Orthologs from Streptococcus thermophilus and Staphylococcus aureus for Non-Homologous End-Joining Mediated Site-Specific Mutagenesis in Arabidopsis thaliana . In: Schmidt, A. (eds) Plant Germline Development. Methods in Molecular Biology, vol 1669. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7286-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7286-9_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7285-2

  • Online ISBN: 978-1-4939-7286-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics