Skip to main content

Apomixis: Engineering the Ability to Harness Hybrid Vigor in Crop Plants

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1669))

Abstract

Apomixis, commonly defined as asexual reproduction through seed, is a reproductive trait that occurs in only a few minor crops, but would be highly valuable in major crops. Apomixis results in seed-derived progenies that are genetically identical to their maternal parent. The advantage of apomixis would lie in seed propagation of elite food, feed, and biofuel crops that are heterozygous such as hybrid corn and switchgrass or self-pollinating crops for which no commercial-scale hybrid production system is available. While hybrid plants often outperform parental lines in growth and higher yields, production of hybrid seed is accomplished through carefully controlled, labor intensive crosses. Both small farmers in developing countries who produce their own seed and commercial companies that market hybrid seed could benefit from the establishment of engineered apomixis in plants. In this chapter, we review what has been learned from studying natural apomicts and mutations in sexual plants leading to apomixis-like development, plus discuss how the components of apomixis could be successfully engineered in plants.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Asker S, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton, FL

    Google Scholar 

  2. Hojsgaard D, Klatt S, Baier R, Carman JG, Hörandl E (2014) Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Crit Rev Plant Sci 33(5):414–427

    Article  PubMed  PubMed Central  Google Scholar 

  3. Noyes RD, Wagner JD (2014) Dihaploidy yields diploid apomicts and parthenogens in Erigeron (Asteraceae). Am J Bot 101(5):865–874

    Article  PubMed  Google Scholar 

  4. Voigt-Zielinski M-L, Piwczyński M, Sharbel TF (2012) Differential effects of polyploidy and diploidy on fitness of apomictic Boechera. Sex Plant Reprod 25(2):97–109

    Article  PubMed  Google Scholar 

  5. Grimanelli D, Leblanc O, Espinosa E, Perotti E, Gonzalez De Leon D, Savidan Y (1998) Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or several genes? Heredity 80(1):33–39

    Article  PubMed  Google Scholar 

  6. Leblanc O, Grimanelli D, Gonzalez-de-Leon D, Savidan Y (1995) Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers. Theor Appl Genet 90(7–8):1198–1203

    CAS  PubMed  Google Scholar 

  7. Pessino S, Ortiz J, Leblanc O, Do Valle C, Evans C, Hayward M (1997) Identification of a maize linkage group related to apomixis in Brachiaria. Theor Appl Genet 94(3–4):439–444

    Article  CAS  Google Scholar 

  8. Pessino SC, Evans C, Ortiz JPA, Armstead I, Valle CBD, Hayward MD (1998) A genetic map of the apospory-region in Brachiaria hybrids: identification of two markers closely associated with the trait. Hereditas 128(2):153–158

    Article  Google Scholar 

  9. Zorzatto C, Chiari L, De Araújo Bitencourt G, Do Valle C, De Campos Leguizamón G, Schuster I, Pagliarini M (2010) Identification of a molecular marker linked to apomixis in Brachiaria humidicola (Poaceae). Plant Breed 129(6):734–736

    Article  CAS  Google Scholar 

  10. Thaikua S, Ebina M, Yamanaka N, Shimoda K, Suenaga K, Kawamoto Y (2016) Tightly clustered markers linked to an apospory-related gene region and quantitative trait loci mapping for agronomic traits in Brachiaria hybrids. Grassl Sci 62(2):69–80

    Article  CAS  Google Scholar 

  11. Worthington M, Heffelfinger C, Bernal D, Quintero C, Zapata YP, Perez JG, De Vega J, Miles J, Dellaporta S, Tohme J (2016) A parthenogenesis gene candidate and evidence for segmental allopolyploidy in apomictic Brachiaria decumbens. Genetics 116:190314

    Google Scholar 

  12. Gustine D, Sherwood R, Huff D (1997) Apospory-linked molecular markers in buffelgrass. Crop Sci 37(3):947–951

    Article  CAS  Google Scholar 

  13. Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci 95(9):5127–5132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roche D, Cong P, Chen Z, Hanna WW, Gustine DL, Sherwood RT, Ozias-Akins P (1999) An apospory-specific genomic region is conserved between Buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen. Plant J 19(2):203–208

    Article  CAS  PubMed  Google Scholar 

  15. Jessup R, Burson B, Burow G, Wang Y-W, Chang C, Li Z, Paterson A, Hussey M (2002) Disomic inheritance, suppressed recombination, and allelic interactions govern apospory in buffelgrass as revealed by genome mapping. Crop Sci 42(5):1688–1694

    Article  CAS  Google Scholar 

  16. Goel S, Chen Z, Conner JA, Akiyama Y, Hanna WW, Ozias-Akins P (2003) Delineation by fluorescence in situ hybridization of a single hemizygous chromosomal region associated with aposporous embryo sac formation in Pennisetum squamulatum and Cenchrus ciliaris. Genetics 163(3):1069–1082

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pupilli F, Labombarda P, Caceres ME, Quarín CL, Arcioni S (2001) The chromosome segment related to apomixis in Paspalum simplex is homoeologous to the telomeric region of the long arm of rice chromosome 12. Mol Breed 8(1):53–61

    Article  CAS  Google Scholar 

  18. Labombarda P, Busti A, Caceres ME, Pupilli F, Arcioni S (2002) An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex. Genome 45(3):513–519

    Article  CAS  PubMed  Google Scholar 

  19. Martínez EJ, Hopp HE, Stein J, Ortiz JP, Quarin CL (2003) Genetic characterization of apospory in tetraploid Paspalum notatum based on the identification of linked molecular markers. Mol Breed 12(4):319–327

    Article  Google Scholar 

  20. Stein J, Pessino SC, Martínez EJ, Rodriguez MP, Siena LA, Quarin CL, Ortiz JPA (2007) A genetic map of tetraploid Paspalum notatum Flügge (bahiagrass) based on single-dose molecular markers. Mol Breed 20(2):153–166

    Article  CAS  Google Scholar 

  21. Ebina M, Nakagawa H, Yamamoto T, Araya H, Si T, Takahara M, Nakajima K (2005) Co-segregation of AFLP and RAPD markers to apospory in Guineagrass (Panicum maximum Jacq.) Grassl Sci 51(1):71–78

    Article  CAS  Google Scholar 

  22. Barcaccia G, Mazzucato A, Albertini E, Zethof J, Gerats A, Pezzotti M, Falcinelli M (1998) Inheritance of parthenogenesis in Poa pratensis L.: auxin test and AFLP linkage analyses support monogenic control. Theor Appl Genet 97(1–2):74–82

    Article  CAS  Google Scholar 

  23. Porceddu A, Albertini E, Barcaccia G, Falistocco E, Falcinelli M (2002) Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudo-testcross strategy based on AFLP and SAMPL markers. Theor Appl Genet 104(2–3):273–280

    Article  CAS  PubMed  Google Scholar 

  24. Albertini E, Barcaccia G, Porceddu A, Sorbolini S, Falcinelli M (2001) Mode of reproduction is detected by Parth1 and Sex1 SCAR markers in a wide range of facultative apomictic Kentucky bluegrass varieties. Mol Breed 7(4):293–300

    Article  CAS  Google Scholar 

  25. Conner JA, Gunawan G, Ozias-Akins P (2013) Recombination within the apospory specific genomic region leads to the uncoupling of apomixis components in Cenchrus ciliaris. Planta 238(1):51–63

    Article  CAS  PubMed  Google Scholar 

  26. Kaushal P, Malaviya D, Roy A, Pathak S, Agrawal A, Khare A, Siddiqui S (2008) Reproductive pathways of seed development in apomictic guinea grass (Panicum maximum Jacq.) reveal uncoupling of apomixis components. Euphytica 164(1):81–92

    Article  Google Scholar 

  27. Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci 103(49):18650–18655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koltunow AM, Johnson SD, Rodrigues J, Okada T, Hu Y, Tsuchiya T, Wilson S, Fletcher P, Ito K, Suzuki G (2011) Sexual reproduction is the default mode in apomictic Hieracium subgenus Pilosella, in which two dominant loci function to enable apomixis. Plant J 66(5):890–902

    Article  CAS  PubMed  Google Scholar 

  29. van Dijk PJ, Bakx-Schotman JT (2004) Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum officinale, sl) is controlled by a sex-specific dominant locus. Genetics 166(1):483–492

    Article  PubMed  PubMed Central  Google Scholar 

  30. Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155(1):379–390

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Noyes R, Baker R, Mai B (2007) Mendelian segregation for two-factor apomixis in Erigeron annuus (Asteraceae). Heredity 98(2):92–98

    Article  CAS  PubMed  Google Scholar 

  32. Schallau A, Arzenton F, Johnston AJ, Hähnel U, Koszegi D, Blattner FR, Altschmied L, Haberer G, Barcaccia G, Bäumlein H (2010) Identification and genetic analysis of the APOSPORY locus in Hypericum perforatum L. Plant J 62(5):773–784

    Article  CAS  PubMed  Google Scholar 

  33. Ogawa D, Johnson SD, Henderson ST, Koltunow AM (2013) Genetic separation of autonomous endosperm formation (AutE) from the two other components of apomixis in Hieracium. Plant Reprod 26(2):113–123

    Article  PubMed  Google Scholar 

  34. van Dijk PJ, van Baarlen P, De Jong JH (2003) The occurrence of phenotypically complementary apomixis-recombinants in crosses between sexual and apomictic dandelions (Taraxacum officinale). Sex Plant Reprod 16(2):71–76

    Article  Google Scholar 

  35. Nakano M, Shimada T, Endo T, Fujii H, Nesumi H, Kita M, Ebina M, Shimizu T, Omura M (2012) Characterization of genomic sequence showing strong association with polyembryony among diverse citrus species and cultivars, and its synteny with Vitis and Populus. Plant Sci 183:131–142

    Article  CAS  PubMed  Google Scholar 

  36. Kepiro J, Roose M (2010) AFLP markers closely linked to a major gene essential for nucellar embryony (apomixis) in Citrus maxima× Poncirus trifoliata. Tree Genet Genomes 6(1):1–11

    Article  Google Scholar 

  37. Silveira ÉD, Guimarães LA, de Alencar Dusi DM, Da Silva FR, Martins NF, do Carmo Costa MM, Alves-Ferreira M, de Campos Carneiro VT (2012) Expressed sequence-tag analysis of ovaries of Brachiaria brizantha reveals genes associated with the early steps of embryo sac differentiation of apomictic plants. Plant Cell Rep 31(2):403–416

    Article  CAS  PubMed  Google Scholar 

  38. Rodrigues JC, Cabral GB, Dusi DM, de Mello LV, Rigden DJ, Carneiro VT (2003) Identification of differentially expressed cDNA sequences in ovaries of sexual and apomictic plants of Brachiaria brizantha. Plant Mol Biol 53(6):745–757

    Article  CAS  PubMed  Google Scholar 

  39. Vielle-Calzada J-P, Nuccio ML, Budiman MA, Thomas TL, Burson BL, Hussey MA, Wing RA (1996) Comparative gene expression in sexual and apomictic ovaries of Pennisetum ciliare (L.) Link. Plant Mol Biol 32(6):1085–1092

    Article  CAS  PubMed  Google Scholar 

  40. Singh M, Burson BL, Finlayson SA (2007) Isolation of candidate genes for apomictic development in buffelgrass (Pennisetum ciliare). Plant Mol Biol 64(6):673–682

    Article  CAS  PubMed  Google Scholar 

  41. Pessino SC, Espinoza F, Martinez EJ, Ortiz JPA, Valle EM, Quarin CL (2001) Isolation of cDNA clones differentially expressed in flowers of apomictic and sexual Paspalum notatum. Hereditas 134(1):35–42

    Article  CAS  PubMed  Google Scholar 

  42. Laspina NV, Vega T, Seijo JG, González AM, Martelotto LG, Stein J, Podio M, Ortiz JPA, Echenique VC, Quarin CL (2008) Gene expression analysis at the onset of aposporous apomixis in Paspalum notatum. Plant Mol Biol 67(6):615–628

    Article  CAS  PubMed  Google Scholar 

  43. Polegri L, Calderini O, Arcioni S, Pupilli F (2010) Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers. J Exp Bot 61(6):1869–1883

    Article  CAS  PubMed  Google Scholar 

  44. Chen L, Miyazaki C, Kojimai A, Saito A, Adachi T (1999) Isolation and characterization of a gene expressed during early embryo sac development in apomictic guinea grass (Panicum maximum). J Plant Physiol 154(1):55–62

    Article  CAS  Google Scholar 

  45. Yamada-Akiyama H, Akiyama Y, Ebina M, Xu Q, Tsuruta S-i, Yazaki J, Kishimoto N, Kikuchi S, Takahara M, Takamizo T (2009) Analysis of expressed sequence tags in apomictic guineagrass (Panicum maximum). J Plant Physiol 166(7):750–761

    Article  CAS  PubMed  Google Scholar 

  46. Sharbel TF, Voigt M-L, Corral JM, Galla G, Kumlehn J, Klukas C, Schreiber F, Vogel H, Rotter B (2010) Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns. Plant Cell 22(3):655–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sharbel TF, Voigt ML, Corral JM, Thiel T, Varshney A, Kumlehn J, Vogel H, Rotter B (2009) Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex. Plant J 58(5):870–882

    Article  CAS  PubMed  Google Scholar 

  48. Amiteye S, Corral JM, Vogel H, Sharbel TF (2011) Analysis of conserved microRNAs in floral tissues of sexual and apomictic Boechera species. BMC Genomics 12(1):1

    Article  CAS  Google Scholar 

  49. Sahu PP, Gupta S, Malaviya D, Roy AK, Kaushal P, Prasad M (2012) Transcriptome analysis of differentially expressed genes during embryo sac development in apomeiotic non-parthenogenetic interspecific hybrid of Pennisetum glaucum. Mol Biotechnol 51(3):262–271

    Article  CAS  PubMed  Google Scholar 

  50. Albertini E, Marconi G, Barcaccia G, Raggi L, Falcinelli M (2004) Isolation of candidate genes for apomixis in Poa pratensis L. Plant Mol Biol 56(6):879–894

    Article  CAS  PubMed  Google Scholar 

  51. Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, Ferranti F, Falcinelli M (2005) SERK and APOSTART. Candidate genes for apomixis in Poa pratensis. Plant Physiol 138(4):2185–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Galla G, Vogel H, Sharbel TF, Barcaccia G (2015) De novo sequencing of the Hypericum perforatum L. flower transcriptome to identify potential genes that are related to plant reproduction sensu lato. BMC Genomics 16(1):1

    Article  CAS  Google Scholar 

  53. Kumar V, Malik SK, Pal D, Srinivasan R, Bhat SR (2014) Comparative transcriptome analysis of ovules reveals stress related genes associated with nucellar polyembryony in citrus. Tree Genet Genomes 10(3):449–464

    Article  Google Scholar 

  54. Nakano M, Kigoshi K, Shimizu T, Endo T, Shimada T, Fujii H, Omura M (2013) Characterization of genes associated with polyembryony and in vitro somatic embryogenesis in citrus. Tree Genet Genomes 9(3):795–803

    Article  Google Scholar 

  55. Okada T, Hu Y, Tucker MR, Taylor JM, Johnson SD, Spriggs A, Tsuchiya T, Oelkers K, Rodrigues JC, Koltunow AM (2013) Enlarging cells initiating apomixis in Hieracium praealtum transition to an embryo sac program prior to entering mitosis. Plant Physiol 163(1):216–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmidt A, Schmid MW, Klostermeier UC, Qi W, Guthörl D, Sailer C, Waller M, Rosenstiel P, Grossniklaus U (2014) Apomictic and sexual germline development differ with respect to cell cycle, transcriptional, hormonal and epigenetic regulation. PLoS Genet 10(7):e1004476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Corral JM, Vogel H, Aliyu OM, Hensel G, Thiel T, Kumlehn J, Sharbel TF (2013) A conserved apomixis-specific polymorphism is correlated with exclusive exonuclease expression in premeiotic ovules of apomictic Boechera species. Plant Physiol 163(4):1660–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Siena LA, Ortiz JPA, Calderini O, Paolocci F, Cáceres ME, Kaushal P, Grisan S, Pessino SC, Pupilli F (2016) An apomixis-linked ORC3-like pseudogene is associated with silencing of its functional homolog in apomictic Paspalum simplex. J Exp Bot 67(6):1965–1978

    Article  CAS  PubMed  Google Scholar 

  59. Conner JA, Goel S, Gunawan G, Cordonnier-Pratt M-M, Johnson VE, Liang C, Wang H, Pratt LH, Mullet JE, DeBarry J (2008) Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus. Plant Physiol 147(3):1396–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Akiyama Y, Goel S, Conner JA, Hanna WW, Yamada-Akiyama H, Ozias-Akins P (2011) Evolution of the apomixis transmitting chromosome in Pennisetum. BMC Evol Biol 11(1):1

    Article  CAS  Google Scholar 

  61. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C-M, van Lammeren AA, Miki BL (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14(8):1737–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim S, Soltis PS, Wall K, Soltis DE (2006) Phylogeny and domain evolution in the APETALA2-like gene family. Mol Biol Evol 23(1):107–120

    Article  CAS  PubMed  Google Scholar 

  63. El Ouakfaoui S, Schnell J, Abdeen A, Colville A, Labbé H, Han S, Baum B, Laberge S, Miki B (2010) Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol 74(4–5):313–326

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Conner JA, Mookkan M, Huo H, Chae K, Ozias-Akins P (2015) A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc Natl Acad Sci 112(36):11205–11210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lutts S, Ndikumana J, Louant B (1994) Male and female sporogenesis and gametogenesis in apomictic Brachiaria brizantha, Brachiaria decumbens and F1 hybrids with sexual colchicine induced tetraploid Brachiaria ruziziensis. Euphytica 78(1–2):19–25

    Google Scholar 

  66. Swenne A, Louant B, Dujardin M (1981) Induction par la colchicine de formes autotétraploïdes chez Brachiaria ruziziensis Germain et Evrard (Graminée). Agron Trop 36(2):134–141

    Google Scholar 

  67. Pinheiro A, Pozzobon M, Do Valle C, Penteado M, Carneiro V (2000) Duplication of the chromosome number of diploid Brachiaria brizantha plants using colchicine. Plant Cell Rep 19(3):274–278

    Article  CAS  Google Scholar 

  68. Simioni C, Cd V (2009) Chromosome duplication in Brachiaria (A. Rich.) Stapf allows intraspecific crosses. Crop Breed Appl Biotechnol 9(4):328–333

    Article  Google Scholar 

  69. Miles JW (2007) Apomixis for cultivar development in tropical forage grasses. Crop Science 47(Suppl 3):S-238-S-249

    Google Scholar 

  70. Singh M, Conner J, Zeng Y-J, Hanna W, Johnson V, Ozias-Akins P (2010) Characterization of apomictic BC7 and BC8 pearl millet: meiotic chromosome behavior and construction of an ASGR-carrier chromosome-specific library. Crop Sci 50(3):892–902

    Article  CAS  Google Scholar 

  71. Leblanc O, Grimanelli D, Hernandez-Rodriguez M, Galindo PA, Soriano-Martinez AM, Perotti E (2009) Seed development and inheritance studies in apomictic maize-Tripsacum hybrids reveal barriers for the transfer of apomixis into sexual crops. Int J Dev Biol 53(4):585–596

    Article  CAS  PubMed  Google Scholar 

  72. Ravi M, Marimuthu MP, Siddiqi I (2008) Gamete formation without meiosis in Arabidopsis. Nature 451(7182):1121–1124

    Article  CAS  PubMed  Google Scholar 

  73. Pawlowski WP, Wang C-JR, Golubovskaya IN, Szymaniak JM, Shi L, Hamant O, Zhu T, Harper L, Sheridan WF, Cande WZ (2009) Maize AMEIOTIC1 is essential for multiple early meiotic processes and likely required for the initiation of meiosis. Proc Natl Acad Sci 106(9):3603–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guitton A-E, Berger F (2005) Loss of function of MULTICOPY SUPPRESSOR OF IRA 1 produces nonviable parthenogenetic embryos in Arabidopsis. Curr Biol 15(8):750–754

    Article  CAS  PubMed  Google Scholar 

  75. Rövekamp M, Bowman JL, Grossniklaus U (2016) Marchantia MpRKD regulates the gametophyte-sporophyte transition by keeping egg cells quiescent in the absence of fertilization. Curr Biol 26(13):1782–1789

    Article  PubMed  CAS  Google Scholar 

  76. Grossniklaus U, Vielle-Calzada J-P, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280(5362):446–450

    Article  CAS  PubMed  Google Scholar 

  77. Kinoshita T, Yadegari R, Harada JJ, Goldberg RB, Fischer RL (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11(10):1945–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci 94(8):4223–4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci 96(1):296–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ohad N, Margossian L, Hsu Y-C, Williams C, Repetti P, Fischer RL (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci 93(11):5319–5324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL (1999) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11(3):407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 22(18):4804–4814

    Article  PubMed  PubMed Central  Google Scholar 

  83. Guitton A-E, Page DR, Chambrier P, Lionnet C, Faure J-E, Grossniklaus U, Berger F (2004) Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131(12):2971–2981

    Article  CAS  PubMed  Google Scholar 

  84. Rodrigues JC, Tucker MR, Johnson SD, Hrmova M, Koltunow AM (2008) Sexual and apomictic seed formation in Hieracium requires the plant polycomb-group gene FERTILIZATION INDEPENDENT ENDOSPERM. Plant Cell 20(9):2372–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tonosaki K, Kinoshita T (2015) Possible roles for polycomb repressive complex 2 in cereal endosperm. Front Plant Sci 6:144

    Article  PubMed  PubMed Central  Google Scholar 

  86. Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada J-P (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464(7288):628–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hernández-Lagana E, Rodríguez-Leal D, Lúa J, Vielle-Calzada J-P (2016) A multigenic network of ARGONAUTE4 clade members controls early megaspore formation in Arabidopsis. Genetics 116:188151

    Google Scholar 

  88. Lawit SJ, Albertsen MC, Fox T, Gordon-Kamm W, VAN AMM, CALZADA JPV, ROSILLO CB, AREVALO ED, CHAVEZ CG, LAGANA EH (2016) Methods for reproducing plants asexually and compositions thereof. WO 2016/048909 A1

    Google Scholar 

  89. Garcia-Aguilar M, Michaud C, Leblanc O, Grimanelli D (2010) Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. Plant Cell 22(10):3249–3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chan SR, Maruthachalam R, Mercier R, Nogue F (2014) Synthetic clonal reproduction through seeds. US20140298507 A1

    Google Scholar 

  91. Lawit SJ (2012) Self-reproducing hybrid plants. US20120266324 A1

    Google Scholar 

  92. d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLoS Biol 7(6):e1000124

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. d'Erfurth I, Cromer L, Jolivet S, Girard C, Horlow C, Sun Y, To JP, Berchowitz LE, Copenhaver GP, Mercier R (2010) The cyclin-A CYCA1; 2/TAM is required for the meiosis I to meiosis II transition and cooperates with OSD1 for the prophase to first meiotic division transition. PLoS Genet 6(6):e1000989

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Mieulet D, Jolivet S, Rivard M, Cromer L, Vernet A, Mayonove P, Pereira L, Droc G, Courtois B, Guiderdoni E (2016) Turning rice meiosis into mitosis. Cell Res 26(11):1242–1254

    Article  CAS  PubMed  Google Scholar 

  95. Schiml S, Puchta H (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods 12(1):1

    Article  CAS  Google Scholar 

  96. Liang G, Zhang H, Lou D, Yu D (2016) Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci Rep 6:Article number: 21451

    Article  CAS  PubMed Central  Google Scholar 

  97. Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  PubMed  Google Scholar 

  98. Warthmann N, Chen H, Ossowski S, Weigel D, Hervé P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3(3):e1829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  99. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18(5):1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53(4):674–690. doi:10.1111/j.1365-313X.2007.03328.x

    Article  CAS  PubMed  Google Scholar 

  101. Marimuthu MP, Jolivet S, Ravi M, Pereira L, Davda JN, Cromer L, Wang L, Nogué F, Chan SW, Siddiqi I (2011) Synthetic clonal reproduction through seeds. Science 331(6019):876–876

    Article  CAS  PubMed  Google Scholar 

  102. Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, Nuccio ML, Martin B (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7:414

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lin B-Y (1984) Ploidy barrier to endosperm development in maize. Genetics 107(1):103–115

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Singh M, Goel S, Meeley RB, Dantec C, Parrinello H, Michaud C, Leblanc O, Grimanelli D (2011) Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein. Plant Cell 23(2):443–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joann A. Conner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Conner, J.A., Ozias-Akins, P. (2017). Apomixis: Engineering the Ability to Harness Hybrid Vigor in Crop Plants. In: Schmidt, A. (eds) Plant Germline Development. Methods in Molecular Biology, vol 1669. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7286-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7286-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7285-2

  • Online ISBN: 978-1-4939-7286-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics