Skip to main content

Microcontact-Printed Hydrogel Microwell Arrays for Clonal Muscle Stem Cell Cultures

  • Protocol
  • First Online:
Skeletal Muscle Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1668))

Abstract

Adult muscle stem cells (also called satellite cells) are an anatomically defined population of cells that are essential for muscle regeneration. In aging and dystrophic diseases, muscle stem cells (MuSCs) exhibit functional and molecular heterogeneity; therefore, single-cell assay technologies are critical to illuminate the mechanisms of pathological stem cell dysfunction. Here, we describe the process of generating mechanically tunable hydrogels with micro-scale well features (“microwells”) using micro-contact printing for clonal muscle stem cell culture assays. Microcontact printing (μCP) is a simple and versatile method for generating cell culture substrates for micro-scale features for spatially restricting the cultures of single cells and their progeny. We explain how to use photolithography and polydimethylsiloxane casting to generate stamps capable of printing purified extracellular matrix proteins onto soft, hydrated poly(ethylene glycol) hydrogels to generate arrayed microwells in a defined pattern. We summarize methods to analyze the viability, migration, and differentiation of individual MuSC clones within hydrogel microwell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cosgrove BD, Sacco A, Gilbert PM, Blau HM (2009) A home away from home: challenges and opportunities in engineering in vitro muscle satellite cell niches. Differentiation 78(2–3):185–194. doi:10.1016/j.diff.2009.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tierney MT, Sacco A (2016) Satellite cell heterogeneity in skeletal muscle homeostasis. Trends Cell Biol 26(6):434–444. doi:10.1016/j.tcb.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081. doi:10.1126/science.1191035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY, Llewellyn ME, Delp SL, Blau HM (2014) Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 20(3):255–264. doi:10.1038/nm.3464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A 103(8):2480–2487. doi:10.1073/pnas.0507681102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bernard A, Renault JP, Michel B, Bosshard HR, Delamarche E (2000) Microcontact printing of proteins. Adv Mater 12(14):1067–1070. doi:10.1002/1521-4095(200007)12:14<1067::Aid-Adma1067>3.0.Co;2-M

    Article  CAS  Google Scholar 

  7. Wang Y, Shah P, Phillips C, Sims CE, Allbritton NL (2012) Trapping cells on a stretchable microwell array for single-cell analysis. Anal Bioanal Chem 402(3):1065–1072. doi:10.1007/s00216-011-5535-9

    Article  CAS  PubMed  Google Scholar 

  8. Lutolf MP, Blau HM (2009) Artificial stem cell niches. Adv Mater 4(21):32–33. doi:10.1002/adma.200802582

    Google Scholar 

  9. Berkowski KL, Plunkett KN, Yu Q, Moore JS (2005) Introduction to photolithography: preparation of microscale polymer silhouettes. J Chem Educ 82(9):1365–1369

    Article  CAS  Google Scholar 

  10. Lorenz H, Despont M, Fahrni N, LaBianca N, Renaud P, Vettiger P (1997) SU-8: a low-cost negative resist for MEMS. J Micromech Microeng 7(3):121–124. doi:10.1088/0960-1317/7/3/010

    Article  CAS  Google Scholar 

  11. Johnson D, Voigt A, Ahrens G, Dai W (2010) Thick epoxy resist sheets for MEMS manufactuing and packaging. Proc IEEE Micr Elect: pp. 412–415

    Google Scholar 

  12. Lutolf MP, Hubbell JA (2003) Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4(3):713–722. doi:10.1021/bm025744e

    Article  CAS  PubMed  Google Scholar 

  13. Magnusson KE, Jalden J, Gilbert PM, Blau HM (2015) Global linking of cell tracks using the Viterbi algorithm. IEEE Trans Med Imaging 34(4):911–929. doi:10.1109/TMI.2014.2370951

    Article  PubMed  Google Scholar 

  14. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67. doi:10.1152/physrev.00043.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blau HM, Cosgrove BD, Ho AT (2015) The central role of muscle stem cells in regenerative failure with aging. Nat Med 21(8):854–862. doi:10.1038/nm.3918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456(7221):502–506. doi:10.1038/nature07384. nature07384 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gobaa S, Hoehnel S, Roccio M, Negro A, Kobel S, Lutolf MP (2011) Artificial niche microarrays for probing single stem cell fate in high throughput. Nat Methods 8(11):949–955. doi:10.1038/nmeth.1732

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R00AG042491 (to B.D.C.). We would like to acknowledge helpful discussions with Helen Blau, Penney Gilbert, Karen Havenstrite, and Matthias Lutolf, who were instrumental in developing this technology, and the advice of the staff technicians at the Cornell NanoScale Science and Technology Facility (CNF), a shared national user facility funded in part by the NSF-NNCI program and New York State.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin D. Cosgrove Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Aguilar, V.M., Cosgrove, B.D. (2017). Microcontact-Printed Hydrogel Microwell Arrays for Clonal Muscle Stem Cell Cultures. In: Ryall, J. (eds) Skeletal Muscle Development. Methods in Molecular Biology, vol 1668. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7283-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7283-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7282-1

  • Online ISBN: 978-1-4939-7283-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics