Skip to main content

Fabrication of Micromolded Gelatin Hydrogels for Long-Term Culture of Aligned Skeletal Myotubes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1668))

Abstract

Cultured skeletal myotubes are a powerful in vitro system for identifying mechanisms of skeletal muscle development and disease. However, skeletal myotubes routinely delaminate from conventional culture substrates after approximately 1 week, which significantly hampers their utility for in vitro disease modeling and drug screening. To address this problem, we fabricated micromolded gelatin hydrogels as culture substrates that are more biomimetic than conventional substrates. On micromolded gelatin hydrogels, C2C12 skeletal myoblasts align and differentiate into skeletal myotubes that are stable in culture for multiple weeks. With this protocol, we detail three key steps: (1) Fabrication of micromolded gelatin hydrogels; (2) Culture of mouse C2C12 myoblasts and differentiation into myotubes; and (3) Quantification of myotube morphology. These substrates have many applications for skeletal muscle disease modeling and drug screening over longer time scales.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44:318–331

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim TN, Choi KM (2013) Sarcopenia: definition, epidemiology, and pathophysiology. J Bone Metab 20:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  3. Emery AE (2002) The muscular dystrophies. Lancet 359:687–695

    Article  CAS  PubMed  Google Scholar 

  4. Yiu EM, Kornberg AJ (2015) Duchenne muscular dystrophy. J Paediatr Child Health 51:759–764

    Article  PubMed  Google Scholar 

  5. Spurney CF (2011) Cardiomyopathy of Duchenne muscular dystrophy: current understanding and future directions. Muscle Nerve 44:8–19

    Article  PubMed  Google Scholar 

  6. McGreevy JW, Hakim CH, McIntosh MA, Duan D (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 8:195–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang PY, Thissen H, Tsai WB (2012) The roles of RGD and grooved topography in the adhesion, morphology, and differentiation of C2C12 skeletal myoblasts. Biotechnol Bioeng 109:2104–2115

    Article  CAS  PubMed  Google Scholar 

  8. Lam MT, Sim S, Zhu X, Takayama S (2006) The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes. Biomaterials 27:4340–4347

    Article  CAS  PubMed  Google Scholar 

  9. Sun Y, Duffy R, Lee A, Feinberg AW (2013) Optimizing the structure and contractility of engineered skeletal muscle thin films. Acta Biomater 9:7885–7894

    Article  CAS  PubMed  Google Scholar 

  10. Duffy RM, Sun Y, Feinberg AW (2016) Understanding the role of ECM protein composition and geometric Micropatterning for engineering human skeletal muscle. Ann Biomed Eng 44:2076–2089

    Article  PubMed  PubMed Central  Google Scholar 

  11. Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166:877–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ward SR, Tomiya A, Regev GJ, Thacker BE, Benzl RC, Kim CW, Lieber RL (2009) Passive mechanical properties of the lumbar multifidus muscle support its role as a stabilizer. J Biomech 42:1384–1389

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bettadapur A, Suh GC, Geisse NA, Wang ER, Hua C, Huber HA, Viscio AA, Kim JY, Strickland JB, McCain ML (2016) Prolonged culture of aligned skeletal myotubes on micromolded gelatin hydrogels. Sci Rep 6:28855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McCain ML, Agarwal A, Nesmith HW, Nesmith AP, Parker KK (2014) Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 35:5462–5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Madden L, Juhas M, Kraus WE, Truskey GA, Bursac N (2015) Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. Elife 4:e04885

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chal J, Al Tanoury Z, Hestin M, Gobert B, Aivio S, Hick A, Cherrier T, Nesmith AP, Parker KK, Pourquie O (2016) Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat Protoc 11:1833–1850

    Article  CAS  PubMed  Google Scholar 

  17. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5:491–502

    Article  CAS  PubMed  Google Scholar 

  18. Feinberg AW, Alford PW, Jin H, Ripplinger CM, Werdich AA, Sheehy SP, Grosberg A, Parker KK (2012) Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials 33:5732–5741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grosberg A, Kuo PL, Guo CL, Geisse NA, Bray MA, Adams WJ, Sheehy SP, Parker KK (2011) Self-organization of muscle cell structure and function. PLoS Comput Biol 7:e1001088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported by the USC Viterbi School of Engineering, The Eli and Edythe Broad Foundation, USC Undergraduate Research Associates Program, USC Women in Science and Engineering, USC Provost’s Undergraduate Research Fellowship, and USC Provost’s PhD Fellowship. We acknowledge the W.M. Keck Foundation Photonics Center Cleanroom for photolithography equipment and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan L. McCain Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Suh, G.C., Bettadapur, A., Santoso, J.W., McCain, M.L. (2017). Fabrication of Micromolded Gelatin Hydrogels for Long-Term Culture of Aligned Skeletal Myotubes. In: Ryall, J. (eds) Skeletal Muscle Development. Methods in Molecular Biology, vol 1668. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7283-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7283-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7282-1

  • Online ISBN: 978-1-4939-7283-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics