Skip to main content

Myogenic Maturation by Optical-Training in Cultured Skeletal Muscle Cells

  • Protocol
  • First Online:
  • 1951 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1668))

Abstract

Optogenetic techniques are powerful tools for manipulating biological processes in identified cells using light under high temporal and spatial resolutions. Here, we describe an optogenetic training strategy to promote morphological maturation and functional development of skeletal muscle cells in vitro. Optical stimulation with a rhythmical frequency facilitates specific structural alignment of sarcomeric proteins. Optical stimulation also depolarizes the membrane potential, and induces contractile responses in synchrony with the given pattern of light pulses. These results suggest that optogenetic techniques can be employed to manipulate activity-dependent processes during myogenic development and control contraction of photosensitive skeletal muscle cells with high temporal and special precision.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Vanderburgh H, Kaufman S (1979) In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203:265–268

    Article  Google Scholar 

  2. Jurkat-Rott K, Lehmann-Horn F (2005) Muscle channelopathies and critical points in functional and genetic studies. J Clin Invest 115:2000–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vaughan RA, Gannon NP, Barberena MA, Garcia-Smith R, Bisoffi M, Mermier CM, Conn CA, Trujillo KA (2014) Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes Metab 16:711–718

    Article  CAS  PubMed  Google Scholar 

  4. Hofmann S, Pette D (1994) Low-frequency stimulation of rat fast-twitch muscle enhances the expression of hexokinase II and both the translocation and expression of glucose transporter 4 (GLUT-4). Eur J Biochem 219:307–315

    Article  CAS  PubMed  Google Scholar 

  5. Sketelj J, Leisner E, Gohlsch B, Škorjanc D, Pette D (1997) Specific impulse patterns regulate acetylcholinesterase activity in skeletal muscles of rats and rabbits. J Neurosci Res 47:49–57

    Article  CAS  PubMed  Google Scholar 

  6. Thelen MH, Simonides WS, van Hardeveld C (1997) Electrical stimulation of C2C12 myotubes induces contractions and represses thyroid-hormone-dependent transcription of the fast-type sarcoplasmic-reticulum Ca2+-ATPase gene. Biochem J 321:845–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park H, Bhalla R, Saigal R, Radisic M, Watson N, Langer R, Vunjak-Novakovic G (2008) Effects of electrical stimulation in C2C12 muscle constructs. J Tissue Eng Regen Med 2:279–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Deyne PG (2000) Formation of sarcomeres in developing myotubes: role of mechanical stretch and contractile activation. Am J Physiol Cell Physiol 279:C1801–C1811

    PubMed  Google Scholar 

  9. Powell CA, Smiley BL, Mills J, Vandenburgh HH (2002) Mechanical stimulation improves tissue-engineered human skeletal muscle. Am J Physiol Cell Physiol 283:C1557–C1565

    Article  CAS  PubMed  Google Scholar 

  10. Nakanishi K, Sudo T, Morishima N (2005) Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development. J Cell Biol 169:555–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hupkes M, Jonsson MK, Scheenen WJ, van Rotterdam W, Sotoca AM, van Someren EP, van der Heyden MA, van Veen TA, van Ravestein-van Os RI, Bauerschmidt S, Piek E, Ypey DL, van Zoelen EJ, Dechering KJ (2011) Epigenetics: DNA demethylation promotes skeletal myotube maturation. FASEB J 25:3861–3872

    Article  CAS  PubMed  Google Scholar 

  12. Pedrotty DM, Koh J, Davis BH, Taylor DA, Wolf P, Niklason LE (2005) Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. Am J Physiol Heart Circ Physiol 288:H1620–H1626

    Article  CAS  PubMed  Google Scholar 

  13. Fujita H, Nedachi T, Kanzaki M (2007) Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Exp Cell Res 313:1853–1865

    Article  CAS  PubMed  Google Scholar 

  14. Burch N, Arnold AS, Item F, Summermatter S, Brochmann Santana Santos G, Christe M, Boutellier U, Toigo M, Handschin C (2010) Electric pulse stimulation of cultured murine muscle cells reproduces gene expression changes of trained mouse muscle. PLoS One 5:e10970

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nikolic N, Skaret Bakke S, Tranheim Kase E, Rudberg I, Flo Halle I, Rustan AC, Thoresen GH, Aas V (2012) Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise. PLoS One 7:e33203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Silveira LR, Pilegaard H, Kusuhara K, Curi R, Hellsten Y (2006) The contraction induced increase in gene expression of peroxisome proliferator-activated receptor (PPAR)-γ coactivator 1 α (PGC-1α), mitochondrial uncoupling protein 3 (UCP3) and hexokinase II (HKII) in primary rat skeletal muscle cells is dependent on reactive oxygen species. Biochim Biophys Acta 1763:969–976

    Article  CAS  PubMed  Google Scholar 

  17. Asano T, Ishizuka T, Yawo H (2012) Optically controlled contraction of photosensitive skeletal muscle cells. Biotechnol Bioeng 109:199–204

    Article  CAS  PubMed  Google Scholar 

  18. Asano T, Ishizuka T, Morishima K, Yawo H (2015) Optogenetic induction of contractile ability in immature C2C12 myotubes. Sci Rep 5:8317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13:251–266

    Article  CAS  PubMed  Google Scholar 

  20. Yawo H, Asano T, Sakai S, Ishizuka T (2013) Optogenetic manipulation of neural and non–neural functions. Develop Growth Differ 55:474–490

    Article  CAS  Google Scholar 

  21. Pathak GP, Vrana JD, Tucker CL (2013) Optogenetic control of cell function using engineered photoreceptors. Biol Cell 105:59–72

    Article  CAS  PubMed  Google Scholar 

  22. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light–gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  23. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  25. Ishizuka T, Kakuda M, Araki R, Yawo H (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54:85–94

    Article  CAS  PubMed  Google Scholar 

  26. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  27. Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2:e299

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviors by optogenetic control of basal ganglia circuitry. Nature 466:622–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, Fleischmann BK, Sasse P (2010) Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 7:897–900

    Article  CAS  PubMed  Google Scholar 

  30. Jia Z, Valiunas V, Lu Z, Bien H, Liu H, Wang HZ, Rosati B, Brink PR, Cohen IS, Entcheva E (2011) Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ Arrhythm Electrophysiol 4:753–760

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee J, Natarajan M, Nashine VC, Socolich M, Vo T, Russ WP, Benkovic SJ, Ranganathan R (2008) Surface sites for engineering allosteric control in proteins. Science 322:438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. YI W, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, Hahn KM (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461:104–108

    Article  Google Scholar 

  33. Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7:973–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wen L, Wang H, Tanimoto S, Egawa R, Matsuzaka Y, Mushiake H, Ishizuka T, Yawo H (2010) Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin. PLoS One 5:e12893

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) research Fellow from JSPS and Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan and Inochinoiro ALS Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Asano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Asano, T., Ishizuka, T., Yawo, H. (2017). Myogenic Maturation by Optical-Training in Cultured Skeletal Muscle Cells. In: Ryall, J. (eds) Skeletal Muscle Development. Methods in Molecular Biology, vol 1668. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7283-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7283-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7282-1

  • Online ISBN: 978-1-4939-7283-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics