Advertisement

Using Cloning to Amplify Neuronal Genomes for Whole-Genome Sequencing and Comprehensive Mutation Detection and Validation

  • Jennifer L. Hazen
  • Michael A. Duran
  • Ryan P. Smith
  • Alberto R. Rodriguez
  • Greg S. Martin
  • Sergey Kupriyanov
  • Ira M. Hall
  • Kristin K. BaldwinEmail author
Protocol
Part of the Neuromethods book series (NM, volume 131)

Abstract

Recent studies of somatic mutation in neurons and other cell types suggest that somatic cells can acquire hundreds to thousands of new mutations over their lifetimes. Each individual mutation can have extremely low prevalence, with many mutations restricted to a single cell. Because of their rarity, somatic mutations can be challenging to detect and reliably distinguish from false-positive calls arising from amplification, sequencing, or bioinformatic methods. In these scenarios, a variety of methods are required to compensate for the limited applicability and technical artifacts inherent in any single approach. In the method we describe, somatic cell nuclear transfer (SCNT, also known as cloning) is used to reprogram single neurons to blastocysts from which we derive embryonic stem cells. Division of these cells faithfully amplifies the neuronal genome for next-generation sequencing and genome-wide mutation detection. This approach allows the detection of false positives due to amplification artifacts and is applicable to all classes of mutations. While it is both sensitive and reliable, our method is lower throughput than single-cell sequencing-based approaches and may also fail to amplify the most severely compromised neuronal genomes. In this chapter, we outline current methods for generating neuron-derived SCNT embryonic cell lines, discuss best practices for genome-wide mutation detection, and address the advantages and limitations of this approach.

Key words

Somatic mutation Postmitotic neuron Somatic cell nuclear transfer Whole-genome sequencing Mobile element insertion Structural variant mutation Copy number variants Indel mutation Single-nucleotide variant mutation 

References

  1. 1.
    Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J (2001) Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci 98(23):13361–13366CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Muotri AR, Chu VT, Marchetto MCN, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435(7044):903–910CrossRefPubMedGoogle Scholar
  3. 3.
    Rehen SK, Yung YC, McCreight MP, Kaushal D, Yang AH, Almeida BSV, Kingsbury MA, Cabral KMS, McConnell MJ, Anliker B, Fontanoz M, Chun J (2005) Constitutional aneuploidy in the normal human brain. J Neurosci 25(9):2176–2180CrossRefPubMedGoogle Scholar
  4. 4.
    Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O’Shea KS, Moran JV, Gage FH (2009) L1 retrotransposition in human neural progenitor cells. Nature 460(7259):1127–1131CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, Brennan PM, Rizzu P, Smith S, Fell M, Talbot RT, Gustincich S, Freeman TC, Mattick JS, Hume DA, Heutink P, Carninci P, Jeddeloh JA, Faulkner GJ (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479(7374):534–537CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS, Parker JJ, Atabay KD, Gilmore EC, Poduri A, Park PJ, Walsh CA (2012) Single-neuron sequencing analysis of L1 Retrotransposition and somatic mutation in the human brain. Cell 151(3):483–496CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Poduri A, Evrony Gilad D, Cai X, Elhosary Princess C, Beroukhim R, Lehtinen Maria K, Hills LB, Heinzen Erin L, Hill A, Hill RS, Barry Brenda J, Bourgeois Blaise FD, Riviello James J, Barkovich AJ, Black Peter M, Ligon Keith L, Walsh Christopher A (2012) Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74(1):41–48. doi: 10.1016/j.neuron.2012.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, Shumilina S, Lasken RS, Vermeesch JR, Hall IM, Gage FH (2013) Mosaic copy number variation in human neurons. Science 342(6158):632CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, Devidze N, Kreitzer AC, Mucke L (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-[beta]. Nat Neurosci 16(5):613–621. doi: 10.1038/nn.3356; http://www.nature.com/neuro/journal/v16/n5/abs/nn.3356.html#supplementary-information
  10. 10.
    Gole J, Gore A, Richards A, Chiu Y-J, Fung H-L, Bushman D, Chiang H-I, Chun J, Lo Y-H, Zhang K (2013) Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat Biotechnol 31(12):1126–1132CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Evrony Gilad D, Lee E, Mehta Bhaven K, Benjamini Y, Johnson Robert M, Cai X, Yang L, Haseley P, Lehmann Hillel S, Park Peter J, Walsh Christopher A (2014) Cell lineage analysis in human brain using endogenous Retroelements. Neuron 85(1):49–59. doi: 10.1016/j.neuron.2014.12.028 CrossRefGoogle Scholar
  12. 12.
    Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A, Lee S, Chittenden TW, D’Gama AM, Cai X, Luquette LJ, Lee E, Park PJ, Walsh CA (2015) Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350(6256):94CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Upton Kyle R, Gerhardt Daniel J, Jesuadian JS, Richardson Sandra R, Sánchez-Luque Francisco J, Bodea Gabriela O, Ewing Adam D, Salvador-Palomeque C, van der Knaap MS, Brennan Paul M, Vanderver A, Faulkner Geoffrey J (2015) Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161(2):228–239. doi: 10.1016/j.cell.2015.03.026 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hazen Jennifer L, Faust Gregory G, Rodriguez Alberto R, Ferguson William C, Shumilina S, Clark Royden A, Boland Michael J, Martin G, Chubukov P, Tsunemoto Rachel K, Torkamani A, Kupriyanov S, Hall Ira M, Baldwin Kristin K (2016) The complete genome sequences, unique mutational spectra, and developmental potency of adult neurons revealed by cloning. Neuron 89(6):1223–1236. doi: 10.1016/j.Neuron.2016.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Erwin JA, Paquola ACM, Singer T, Gallina I, Novotny M, Quayle C, Bedrosian TA, Alves FIA, Butcher CR, Herdy JR, Sarkar A, Lasken RS, Muotri AR, Gage FH (2016) L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci 19(12):1583–1591. doi: 10.1038/nn.4388; http://www.nature.com/neuro/journal/v19/n12/abs/nn.4388.html#supplementary-information
  16. 16.
    Cai X, Evrony Gilad D, Lehmann Hillel S, Elhosary Princess C, Mehta Bhaven K, Poduri A, Walsh Christopher A (2014) Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 8(5):1280–1289. doi: 10.1016/j.celrep.2014.07.043 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lathe R, Harris A (2009) Differential display detects host nucleic acid motifs altered in scrapie-infected brain. J Mol Biol 392(3):813–822. doi: 10.1016/j.jmb.2009.07.045 CrossRefPubMedGoogle Scholar
  18. 18.
    Jeong B-H, Lee Y-J, Carp RI, Kim Y-S (2010) The prevalence of human endogenous retroviruses in cerebrospinal fluids from patients with sporadic Creutzfeldt–Jakob disease. J Clin Virol 47(2):136–142CrossRefPubMedGoogle Scholar
  19. 19.
    Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468(7322):443–446CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Douville R, Liu J, Rothstein J, Nath A (2011) Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann Neurol 69(1):141–151. doi: 10.1002/ana.22149 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BJ, Cho WG, Kleinman ME, Ponicsan SL, Hauswirth WW, Chiodo VA, Kariko K, Yoo JW, D-k L, Hadziahmetovic M, Song Y, Misra S, Chaudhuri G, Buaas FW, Braun RE, Hinton DR, Zhang Q, Grossniklaus HE, Provis JM, Madigan MC, Milam AH, Justice NL, Albuquerque RJC, Blandford AD, Bogdanovich S, Hirano Y, Witta J, Fuchs E, Littman DR, Ambati BK, Rudin CM, Chong MMW, Provost P, Kugel JF, Goodrich JA, Dunaief JL, Baffi JZ, Ambati J (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471(7338):325–330CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Coufal NG, Garcia-Perez JL, Peng GE, Marchetto MCN, Muotri AR, Mu Y, Carson CT, Macia A, Moran JV, Gage FH (2011) Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci 108(51):20382–20387CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tan H, Qurashi A, Poidevin M, Nelson DL, Li H, Jin P (2012) Retrotransposon activation contributes to fragile X premutation rCGG-mediated neurodegeneration. Hum Mol Genet 21(1):57–65CrossRefPubMedGoogle Scholar
  24. 24.
    Li W, Jin Y, Prazak L, Hammell M, Dubnau J (2012) Transposable elements in TDP-43-mediated neurodegenerative disorders. PLoS One 7(9):e44099. doi: 10.1371/journal.pone.0044099 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Li W, Prazak L, Chatterjee N, Gruninger S, Krug L, Theodorou D, Dubnau J (2013) Activation of transposable elements during aging and neuronal decline in drosophila. Nat Neurosci 16(5):529–531CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T, Sunaga F, Toritsuka M, Ikawa D, Kakita A, Kato M, Kasai K, Kishimoto T, Nawa H, Okano H, Yoshikawa T, Kato T, Iwamoto K (2014) Increased L1 Retrotransposition in the neuronal genome in schizophrenia. Neuron 81(2):306–313. doi: 10.1016/j.neuron.2013.10.053 CrossRefPubMedGoogle Scholar
  27. 27.
    Borgesius NZ, de Waard MC, van der Pluijm I, Omrani A, Zondag GCM, van der Horst GTJ, Melton DW, Hoeijmakers JHJ, Jaarsma D, Elgersma Y (2011) Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair. J Neurosci 31(35):12543CrossRefPubMedGoogle Scholar
  28. 28.
    Madabhushi R, Pan L, Tsai L-H (2014) DNA damage and its links to neurodegeneration. Neuron 83(2):266–282. doi: 10.1016/j.neuron.2014.06.034 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jeppesen DK, Bohr VA, Stevnsner T (2011) DNA repair deficiency in neurodegeneration. Prog Neurobiol 94(2):166–200. doi: 10.1016/j.pneurobio.2011.04.013 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Poduri A, Evrony GD, Cai X, Walsh CA (2013) Somatic mutation, genomic variation, and neurological disease. Science 341(6141):1237758CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shendure J, Akey JM (2015) The origins, determinants, and consequences of human mutations. Science 349(6255):1478–1483CrossRefPubMedGoogle Scholar
  32. 32.
    McKinnon PJ (2013) Maintaining genome stability in the nervous system. Nat Neurosci 16(11):1523–1529. doi: 10.1038/nn.3537 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17(3):175–188. doi: 10.1038/nrg.2015.16 CrossRefPubMedGoogle Scholar
  34. 34.
    Macaulay IC, Voet T (2014) Single cell genomics: advances and future perspectives. PLoS Genet 10(1):e1004126. doi: 10.1371/journal.pgen.1004126 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Herrup K, Neve R, Ackerman SL, Copani A (2004) Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 24(42):9232CrossRefPubMedGoogle Scholar
  36. 36.
    Hiler D, Chen X, Hazen J, Kupriyanov S, Carroll Patrick A, Qu C, Xu B, Johnson D, Griffiths L, Frase S, Rodriguez Alberto R, Martin G, Zhang J, Jeon J, Fan Y, Finkelstein D, Eisenman Robert N, Baldwin K, Dyer Michael A (2015) Quantification of Retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors. Cell Stem Cell 17(1):101–115. doi: 10.1016/j.stem.2015.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ajioka I, Martins RAP, Bayazitov IT, Donovan S, Johnson DA, Frase S, Cicero SA, Boyd K, Zakharenko SS, Dyer MA (2007) Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell 131(2):378–390. doi: 10.1016/j.cell.2007.09.036 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338(6110):1080–1084CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kim J, Lengner CJ, Kirak O, Hanna J, Cassady JP, Lodato MA, Wu S, Faddah DA, Steine EJ, Gao Q, Fu D, Dawlaty M, Jaenisch R (2011) Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors. Stem Cells 29(6):992–1000CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813CrossRefPubMedGoogle Scholar
  41. 41.
    Wakayama T, Perry ACF, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394(6691):369–374CrossRefPubMedGoogle Scholar
  42. 42.
    Eggan K, Baldwin K, Tackett M, Osborne J, Gogos J, Chess A, Axel R, Jaenisch R (2004) Mice cloned from olfactory sensory neurons. Nature 428(6978):44–49CrossRefPubMedGoogle Scholar
  43. 43.
    Eggan K, Jaenisch R (2006) Generation of embryonic stem (ES) cell-derived embryos and mice by tetraploid–embryo complementation. Mammalian and avian Transgenesis—new approaches. Springer, HeidelbergGoogle Scholar
  44. 44.
    Hochedlinger K, Jaenisch R (2002) Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415(6875):1035–1038CrossRefPubMedGoogle Scholar
  45. 45.
    Makino H, Yamazaki Y, Hirabayashi T, Kaneko R, Hamada S, Kawamura Y, Osada T, Yanagimachi R, Yagi T (2005) Mouse embryos and chimera cloned from neural cells in the postnatal cerebral cortex. Cloning Stem Cells 7(1):45–61CrossRefPubMedGoogle Scholar
  46. 46.
    Nagy A, Gocza E, Diaz EM, Prideaux VR, Ivanyi E, Markkula M, Rossant J (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110(3):815–821PubMedGoogle Scholar
  47. 47.
    Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci 90(18):8424–8428CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tachibana M, Amato P, Sparman M, Gutierrez Nuria M, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee H-S, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer Richard L, Wolf D, Mitalipov S (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153(6):1228–1238. doi: 10.1016/j.cell.2013.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2(10):743–755CrossRefPubMedGoogle Scholar
  50. 50.
    Madisen L, Zwingman TA, Sunkin SM, SW O, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140; http://www.nature.com/neuro/journal/v13/n1/suppinfo/nn.2467_S1.html
  51. 51.
    Brewer GJ, Torricelli JR (2007) Isolation and culture of adult neurons and neurospheres. Nat Protoc 2(6):1490–1498CrossRefPubMedGoogle Scholar
  52. 52.
    Kishigami S, Wakayama S, Van Thuan N, Ohta H, Mizutani E, Hikichi T, Bui H-T, Balbach S, Ogura A, Boiani M, Wakayama T (2006) Production of cloned mice by somatic cellnuclear transfer. Nat Protoc 1(1):125–138; http://www.nature.com/nprot/journal/v1/n1/suppinfo/nprot.2006.21_S1.html
  53. 53.
    Eggan K, Jaenisch R (2006) Cloning the laboratory mouse by nuclear transfer. In: Pease S, Lois C (eds) Mammalian and Avian transgenesis—new approaches. Springer, Berlin, pp 69–96. doi: 10.1007/978-3-540-28489-5_4 CrossRefGoogle Scholar
  54. 54.
    Kishigami S, Mizutani E, Ohta H, Hikichi T, Thuan NV, Wakayama S, Bui H-T, Wakayama T (2006) Significant improvement of mouse cloning technique by treatment with trichostatin a after somatic nuclear transfer. Biochem Biophys Res Commun 340(1):183–189. doi: 10.1016/j.bbrc.2005.11.164 CrossRefPubMedGoogle Scholar
  55. 55.
    Meissner A, Eminli S, Jaenisch R (2009) Derivation and manipulation of murine embryonic stem cells. In: Audet J, Stanford W (eds) Stem cells in regenerative medicine, Methods in molecular biology, vol 482. Humana Press, New York, pp 3–19. doi: 10.1007/978-1-59745-060-7_1 CrossRefGoogle Scholar
  56. 56.
    Tamm C, Pijuan Galitó S, Annerén C (2013) A comparative study of Protocols for mouse embryonic stem cell culturing. PLoS One 8(12):e81156. doi: 10.1371/journal.pone.0081156 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, Marth GT, Quinlan AR, Hall IM (2015) SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat Methods 12:966–968. doi: 10.1038/nmeth.3505 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P (2015) Sambamba: fast processing of NGS alignment formats. Bioinformatics 31:2032–2034. doi: 10.1093/bioinformatics/btv098
  59. 59.
    DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, Philippakis A, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell T, Kernytsky A, Sivachenko A, Cibulskis K, Gabriel S, Altshuler D, Daly M (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43:491–498. doi: 10.1038/ng.806
  60. 60.
    Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA (2013) From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10–11.33. doi: 10.1002/0471250953.bi1110s43 Google Scholar
  61. 61.
    Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M, Furlotte NA, Eskin E, Nellåker C, Whitley H, Cleak J, Janowitz D, Hernandez-Pliego P, Edwards A, Belgard TG, Oliver PL, McIntyre RE, Bhomra A, Nicod J, Gan X, Yuan W, van der Weyden L, Steward CA, Balasubramaniam S, Stalker J, Mott R, Durbin R, Jackson IJ, Czechanski A, Assunção JAG, Donahue LR, Reinholdt LG, Payseur BA, Ponting CP, Birney E, Flint J, Adams DJ (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:289–294. doi: 10.1038/nature10413 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson SA, Sigurdsson A, Jonasdottir A, Jonasdottir A, Wong WSW, Sigurdsson G, Walters GB, Steinberg S, Helgason H, Thorleifsson G, Gudbjartsson DF, Helgason A, Magnusson OT, Thorsteinsdottir U, Stefansson K (2012) Rate of de novo mutations and the importance of father/’s age to disease risk. Nature 488:471–475. doi: 10.1038/nature11396 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Layer RM, Chiang C, Quinlan AR, Hall IM (2014) LUMPY: a probabilistic framework for structural variant discovery. Genome Biol 15:R84. doi: 10.1186/gb-2014-15-6-r84 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Hall IM, et. al., SV Typer. https://github.com/hall-lab/sv-pipeline
  65. 65.
    Derrien T, Estellé J, Sola SM, Knowles DG, Raineri E, Guigó R, Ribeca P (2012) Fast computation and applications of genome Mappability. PLoS One 7:e30377. doi: 10.1371/journal.pone.0030377 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Jennifer L. Hazen
    • 1
  • Michael A. Duran
    • 1
  • Ryan P. Smith
    • 1
  • Alberto R. Rodriguez
    • 1
  • Greg S. Martin
    • 1
  • Sergey Kupriyanov
    • 1
  • Ira M. Hall
    • 1
  • Kristin K. Baldwin
    • 2
    Email author
  1. 1.Dorris Neuroscience CenterScripps Research InstituteSan DiegoUSA
  2. 2.Department of Neuroscience, Dorris Neuroscience CenterScripps Research Institute—California CampusSan DiegoUSA

Personalised recommendations