Advertisement

Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) for the Analysis of DNA Copy Number Variation

  • Chenghang ZongEmail author
Protocol
Part of the Neuromethods book series (NM, volume 131)

Abstract

The genomes of even close kindred cells are not identical due to various forms of genomic variations. To discover the uniqueness of each genome, we need to examine the genome at single-cell resolution. Here we describe the recent progress in the development of single-cell whole-genome amplification methods and the state of art for analyzing one of the major forms of genomic variations—copy number of variations (CNVs). Robust detection of CNVs in single cells has allowed successful clinical applications such as prenatal genome screening and diagnosis.

Key words

Single-cell sequencing Single-cell WGA MALBAC MDA Copy number variations 

References

  1. 1.
    Dean FB, Nelson JR, Giesler TL, Lasken RS (2001) Rapid amplification of plasmid and phage DNA using phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11(6):1095–1099. doi: 10.1101/gr.180501. PubMed PMID: 11381035; PubMed Central PMCID: PMC311129CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94. doi: 10.1038/nature09807. PubMed PMID: 21399628; PubMed Central PMCID: PMC4504184CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS et al (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151(3):483–496. doi: 10.1016/j.cell.2012.09.035. PubMed PMID: 23101622; PubMed Central PMCID: PMC3567441CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lu S, Zong C, Fan W, Yang M, Li J, Chapman AR et al (2012) Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science 338(6114):1627–1630. doi: 10.1126/science.1229112. PubMed PMID: 23258895; PubMed Central PMCID: PMC3590491CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang J, Fan HC, Behr B, Quake SR (2012) Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150(2):402–412. doi: 10.1016/j.cell.2012.06.030. PubMed PMID: 22817899; PubMed Central PMCID: PMC3525523CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Xu X, Hou Y, Yin X, Bao L, Tang A, Song L et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148(5):886–895. doi: 10.1016/j.cell.2012.02.025. PubMedCrossRefPubMedGoogle Scholar
  7. 7.
    Zong C, Lu S, Chapman AR, Xie XS (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338(6114):1622–1626. doi: 10.1126/science.1229164. PubMed PMID: 23258894; PubMed Central PMCID: PMC3600412CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X et al (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512(7513):155–160. doi: 10.1038/nature13600. PubMed PMID: 25079324; PubMed Central PMCID: PMC4158312CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Huang L, Ma F, Chapman A, Lu S, Xie XS (2015) Single-cell whole-genome amplification and sequencing: methodology and applications. Annu Rev Genomics Hum Genet 16:79–102. doi: 10.1146/annurev-genom-090413-025352. PubMedCrossRefPubMedGoogle Scholar
  10. 10.
    Baslan T, Kendall J, Ward B, Cox H, Leotta A, Rodgers L et al (2015) Optimizing sparse sequencing of single cells for highly multiplex copy number profiling. Genome Res 25(5):714–724. doi: 10.1101/gr.188060.114. PubMed PMID: 25858951; PubMed Central PMCID: PMC4417119CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A et al (2015) Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350(6256):94–98. doi: 10.1126/science.aab1785. PubMed PMID: 26430121; PubMed Central PMCID: PMC4664477CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X et al (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148(5):873–885. doi: 10.1016/j.cell.2012.02.028. PubMedCrossRefPubMedGoogle Scholar
  13. 13.
    Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J, Chisholm SW et al (2006) Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol 24(6):680–686. doi: 10.1038/nbt1214. PubMedCrossRefPubMedGoogle Scholar
  14. 14.
    Ni X, Zhuo M, Su Z, Duan J, Gao Y, Wang Z et al (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci U S A 110(52):21083–21088. doi: 10.1073/pnas.1320659110. PubMed PMID: 24324171; PubMed Central PMCID: PMC3876226CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B et al (2013) Pan-Cancer patterns of somatic copy number alteration. Nat Genet 45(10):1134–1140. doi: 10.1038/ng.2760. PubMed PMID: 24071852; PubMed Central PMCID: PMC3966983CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hou Y, Fan W, Yan L, Li R, Lian Y, Huang J et al (2013) Genome analyses of single human oocytes. Cell 155(7):1492–1506. doi: 10.1016/j.cell.2013.11.040. PubMedCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Baylor College of MedicineHoustonUSA

Personalised recommendations