A Cytomic Approach Towards Genomic Individuality of Neurons

  • Thomas ArendtEmail author
  • Birgit Belter
  • Martina K. Brückner
  • Uwe Ueberham
  • Markus Morawski
  • Attila Tarnok
Part of the Neuromethods book series (NM, volume 131)


Here, we describe an approach for the DNA quantification of single cells in brain slices based on image cytometry (IC) that allows mapping the distribution of neurons with DNA content variation (DCV) in the context of preserved tissue architecture. The method had been optimized for DNA quantification of identified neurons but could easily be adapted to other tissues. It had been validated against chromogenic in situ hybridization (CISH) with chromosome-specific probes and laser microdissection followed by quantitative PCR (qPCR) of alu repeats. It can be combined with immunocytochemical detection of specific marker proteins which allow for further specification of cellular identity in the context of defined brain pathology. The method can be applied in a high-throughput mode where it allows analyzing 500,000 neurons per brain in a reasonable time. The combination of cytometry with molecular biological characterization of single microscopically identified neurons as outlined here might be a promising approach to study molecular individuality of neurons in the context of its physiological or pathophysiological environment. It reflects the concept of cytomics and will forward our understanding of the molecular architecture and functionality of neuronal systems.

Key words

Ageing Alzheimer’s disease Aneuploidy Cell death Cellular individuality Cytomics DNA content variation Genomic mosaic Neurodegeneration Polyploidy Single-cell analysis 


  1. 1.
    Thomson RY, Frazer SC (1954) The deoxyribonucleic acid content of individual rat cell nuclei. Exp Cell Res 6:367–383CrossRefPubMedGoogle Scholar
  2. 2.
    Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J (2001) Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci U S A 98:13361–13366CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rehen SK, Yung YC, McCreight MP, Kaushal D, Yang AH, Almeida BSV, Kingsbury MA, Cabral KMS, McConnell MJ, Anliker B, Fontanoz M, Chun J (2005) Constitutional aneuploidy in the normal human brain. J Neurosci 25:2176–2180CrossRefPubMedGoogle Scholar
  4. 4.
    Kingsbury MA, Friedman B, McConnell MJ, Rehen SK, Yang AH, Kaushal D, Chun J (2005) Aneuploid neurons are functionally active and integrated into brain circuitry. Proc Natl Acad Sci U S A 102:6143–6147CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mosch B, Mittag A, Lenz D, Arendt T, Tárnok A (2006) Laser scanning cytometry in human brain slices. Cytometry Part A 69:135–138CrossRefGoogle Scholar
  6. 6.
    Yurov YB, Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Kutsev SI, Pellestor F, Beresheva AK, Demidova IA, Kravets VS, Monakhov VV, Soloviev IV (2007) Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS One 2:e558CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Iourov IY, Vorsanova SG, Liehr T, Yurov YB (2009) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34:212–220CrossRefPubMedGoogle Scholar
  8. 8.
    Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Yurov YB (2009) Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Human Mol Genet 18:2656–2669CrossRefGoogle Scholar
  9. 9.
    Iourov I, Vorsanova S, Yurov Y (2011) Genomic landscape of the Alzheimer’s disease brain: chromosome instability-aneuploidy, but not tetraploidy—mediates neurodegeneration. Neurodegener Dis 8:35–37; discussion 38–40.PubMedGoogle Scholar
  10. 10.
    Vorsanova SG, Yurov YB, Iourov IY (2010) Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogen 3:1CrossRefGoogle Scholar
  11. 11.
    Westra JW, Rivera RR, Bushman DM, Yung YC, Peterson SE, Barral S, Chun J (2010) Neuronal DNA content variation (DCV) with regional and individual differences in the human brain. J Comp Neurol 518:3981–4000CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Arendt T, Brückner MK, Mosch B, Lösche A (2010) Selective cell death of hyperploid neurons in Alzheimer’s disease. Am J Pathol 177:15–20CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Arendt T (2012) Cell cycle activation and aneuploid neurons in Alzheimer’s disease. Mol Neurobiol 46:125–135CrossRefPubMedGoogle Scholar
  14. 14.
    Arendt T, Brückner MK, Lösche A (2015) Regional mosaic genomic heterogeneity in the elderly and in Alzheimer’s disease as a correlate of neuronal vulnerability. Acta Neuropathol 130(4):501–510CrossRefPubMedGoogle Scholar
  15. 15.
    Fischer HG, Morawski M, Brückner MK, Mittag A, Tarnok A, Arendt T (2012) Changes in neuronal DNA content variation in the human brain during aging. Aging Cell 11:628–633CrossRefPubMedGoogle Scholar
  16. 16.
    McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C et al (2013) Mosaic copy number variation in human neurons. Science 342(6158):632–637. doi: 10.1126/science.1243472 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cai X, Evrony GD, Lehmann HS, Elhosary PC, Mehta BK, Poduri A, Walsh CA (2014) Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 8(5):1280–1289. doi: 10.1016/j.celrep.2014.07.043 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Brodsky VJ, Kusc AA (1962) Changes in the number of polyploid cells during postnatal development of rat tissue. Sci USSR 147:713–716Google Scholar
  19. 19.
    Müller H (1962) Cytophotometrische DNS-Messungen an Ganglienzellkernen des Nucleus dentatus beim Menschen. Naturwiss 49:243CrossRefGoogle Scholar
  20. 20.
    Lapham LW (1965) The tetraploid DNA content of normal human Purkinje cells and its development during the perinatal period: a quantitative cytochemical study. Excerpta Med (Amst) Cong Ser 100:445–449Google Scholar
  21. 21.
    Lapham LW (1968) Tetraploid DNA content of Purkinje neurons of human cerebellar cortex. Science 159:310–312CrossRefPubMedGoogle Scholar
  22. 22.
    Herman CJ, Lapham LW (1969) Neuronal polyploidy and nuclear volumes in the cat central nervous system. Brain Res 15:35–48CrossRefPubMedGoogle Scholar
  23. 23.
    Mares V, Lodin Z, Sácha J (1973) A cytochemical and autoradiographic study of nuclear DNA in mouse Purkinje cells. Brain Res 53:273–289CrossRefPubMedGoogle Scholar
  24. 24.
    Sandritter W, Novokova V, Pilny J, Kiefer G (1967) Cytophotometrische Messungen des Nukleinsäure- und Proteingehaltes von Ganglienzellen der Ratte während der postnatalen Entwicklung und im Alter. Zeitschr Zellforsch 80:145–152CrossRefGoogle Scholar
  25. 25.
    Lentz RD, Lapham LW (1969) A quantitative cytochemical study of the DNA content of neurons of rat cerebellar cortex. J Neurochem 16:379–384CrossRefPubMedGoogle Scholar
  26. 26.
    Lentz RD, Lapham LW (1970) Postnatal development of tetraploid DNA content in rat purkinje cells: a quantitative cytochemical study. J Neuropathol Exp Neurol 29:43–56CrossRefPubMedGoogle Scholar
  27. 27.
    Brodsky VJ, Sokolova GA, Manakova TE (1971) Multiple increase of DNA in the Purkinje cells of cerebellum in ontogenesis of rats. Ontogeny (USSR) 2:33–36Google Scholar
  28. 28.
    Brodsky VY, Agroskin LS, Lebedev EA, Marshak TL, Papayan GV, Segal OL, Sokolova GA, Yarygin KN (1974) Stability and variations of amount of DNA in a population of cerebellum cells. Z Obshchei. Biol 35:917–925Google Scholar
  29. 29.
    Bernocchi G (1975) Contenuto in DNA e area nucleare dei neuroni durante l’istogenese cerebellare del ratto. Instituto Lombardo (Rend Sc) 109:143–161Google Scholar
  30. 30.
    Bernocchi G, Manfredi Romanini MG (1977) Chromatin Cytochemistry as a tool for the functional interpretation of Purkinje’s cells in rat cerebellum. Riv Istochim Norm Patol 21:131–142Google Scholar
  31. 31.
    Bernocchi G, Redi CA, Scherini E (1979) Feulgen-DNA content of the Purkinje neuron: “diploid” or “tetraploid”? Basic Appl Histochem 23:65–70PubMedGoogle Scholar
  32. 32.
    Bregnard A, Knüsel A, Kuenzle CC (1975) Are all the neuronal nuclei polyploid? Histochemistry 43:59–61CrossRefPubMedGoogle Scholar
  33. 33.
    Marshak TL, Petruchuk EM, Aref’eva AM, Shalunova NV, Brodskii VI (1976) O soderzhanii DNK V kletkakh Purkin’e mozzhechka krys, spontanno infitsirovannykh virusom Kilkhema. Biull Eksp Biol Med 82:1274–1276CrossRefPubMedGoogle Scholar
  34. 34.
    Marshak TL, Maresh V, Brodskii V (1978) [Number of Purkinje cells with an increased DNA content in rat cerebellum]. Kolichestvo kletok Purkin’e s uvelichennym soderzhaniem DNK v mozzhechke krysy. Tsitolog 20:651–656Google Scholar
  35. 35.
    Magkian I, Karalova EM (1975) [Basic factors in the polyploidization of cerebellar Purkinfe cells in chick embryogenesis. III. Kinetics of RNA and DNA in Purkinje cell nuclei]. Osenovnye faktory poliploidizatsii kletok Purkin’e mozzhechka v embriogeneze kur IIIKinetika RNK i DNK v iadrakh kletok Purkin’e. Tsitolog 17:653–659Google Scholar
  36. 36.
    Herman CJ, Lapham LW (1968) DNA content of neurons in the cat hippocampus. Science 160:537CrossRefPubMedGoogle Scholar
  37. 37.
    Svanidze IK (1967) Cytophotometry of DNA amounts in nuclei of neurons and gliacytes of the cerebral cortex of rats at different ontogenetic stages. J Gen Biol (USSR) 28:697–708Google Scholar
  38. 38.
    Nováková V, Sandritter W, Schlueter G (1970) DNA content of neurons in rat central nervous system. Exp Cell Res 60:454–456CrossRefPubMedGoogle Scholar
  39. 39.
    Bregnard A, Kuenzle CC, Ruch F (1977) Cytophotometric and autoradiographic evidence for post-natal DNA synthesis in neurons of the rat cerebral cortex. Exp Cell Res 107:151–157CrossRefPubMedGoogle Scholar
  40. 40.
    Museridze DP, Svanidze IK (1972) Quantitative analysis of DNA in the neurons of the visual cortex of the brain at the early stages of postnatal ontogenesis of guinea pigs. Sov J Dev Biol 3:430–434PubMedGoogle Scholar
  41. 41.
    Kut AA, Iarygin VN (1965) Polipliodiia odnoiadernykh i dvuiadernykh neĭronov v verkhnem sheĭnom uzle krolika. [polyploidy of mononuclear and binuclear neurons in the upper cervical ganglia of the rabbit; article in Russian]. Tsitologiia 7(2):228–233PubMedGoogle Scholar
  42. 42.
    Swartz FJ, Bhatnagar KP (1981) Are CNS neurons polyploid? A critical analysis based upon cytophotometric study of the DNA content of cerebellar and olfactory bulbar neurons of the bat. Brain Res 208:267–281CrossRefPubMedGoogle Scholar
  43. 43.
    Kuenzle CC, Bregnard A, Hübscher U, Ruch F (1978) Extra DNA in forebrain cortical neurons. Exp Cell Res 113:151–160CrossRefPubMedGoogle Scholar
  44. 44.
    Bregnard A, Ruch F, Lutz H, Kuenzle CC (1979) Histones and DNA increase synchronously in neurons during early postnatal development of the rat forebrain cortex. Histochemistry 61:271–279CrossRefPubMedGoogle Scholar
  45. 45.
    Morselt AF, Braakman DJ, James J (1972) Feulgen-DNA and fast-green histone estimations in individual cell nuclei of the cerebellum of young and old rats. Acta Histochem 43:281–286PubMedGoogle Scholar
  46. 46.
    Cohen J, Mares V, Lodin Z (1973) DNA content of purified preparations of mouse Purkinje neurons isolated by a velocity sedimentation technique. J Neurochem 20:651–657CrossRefPubMedGoogle Scholar
  47. 47.
    Mann DM, Yates PO (1973) Polyploidy in the human nervous system: part 1. The DNA content of neurones and glia of the cerebellum. J Neurol Sci 18:183–196CrossRefPubMedGoogle Scholar
  48. 48.
    Mann DM, Yates PO, Barton CM (1978) The DNA content of Purkinje cells in mammals. J Comp Neurol 180:345–347CrossRefPubMedGoogle Scholar
  49. 49.
    Fujita S (1974) DNA constancy in neurons of the human cerebellum and spinal cord as revealed by Feulgen cytophotometry and cytofluorometry. J Comp Neurol 155:195–202CrossRefPubMedGoogle Scholar
  50. 50.
    Fukuda M, Bohm N, Fujita S (1978) Cytophotometry and its biological application. Prog Histochem Cytochem 11:1–119CrossRefPubMedGoogle Scholar
  51. 51.
    Fujita S, Fukuda M, Kitamura T, Satoru Y (1972) Two-wave-length-scanning method in Feulgen Cytophotometry. Acta Histochem Cytochem 5:146–152CrossRefGoogle Scholar
  52. 52.
    Duijndam WA, Smeulders AW, van Duijn P, Verweij AC (1980) Optical errors in scanning stage absorbance cytophotometry. I. Procedures for correcting apparent integrated absorbance values for distributional, glare, and diffraction errors. J Histochem Cytochem 28:388–394CrossRefPubMedGoogle Scholar
  53. 53.
    Duijndam WA, van Duijn P, Riddersma SH (1980) Optical errors in scanning stage absorbance cytophotometry. II. Application of correction factors for residual distributional error, glare and diffraction error in practical cytophotometry. J Histochem Cytochem 28:395–400CrossRefPubMedGoogle Scholar
  54. 54.
    Brodsky VJ, Marshak TL, Mares V, Lodin Z, Fülöp Z, Lebedev EA (1979) Constancy and variability in the content of DNA in cerebellar Purkinje cell nuclei. A cytophotometric study. Histochemistry 59:233–248CrossRefPubMedGoogle Scholar
  55. 55.
    Mares V, van der Ploeg M (1980) Cytophotometric re-investigation of DNA content in Purkinje cells of the rat cerebellum. Histochemistry 69:161–167CrossRefPubMedGoogle Scholar
  56. 56.
    Marshak TL, Mares V, Brodsky VY (1985) An attempt to influence DNA content in postmitotic Purkinje cells of the cerebellum. Acta Histochem 76:193–200CrossRefPubMedGoogle Scholar
  57. 57.
    Costain G, Lionel AC, Ogura L, Marshall CR, Scherer SW, Silversides CK, Bassett AS (2016) Genome-wide rare copy number variations contribute to genetic risk for transposition of the great arteries. Int J Cardiol 204:115–121. doi: 10.1016/j.ijcard.2015.11.127 CrossRefPubMedGoogle Scholar
  58. 58.
    Mosch B, Morawski M, Mittag A, Lenz D, Tarnok A, Arendt T (2007) Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J Neurosci 27:6859–6867CrossRefPubMedGoogle Scholar
  59. 59.
    Cui C, Shu W, Li P (2016) Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front Cell Dev Biol 4:89. doi: 10.3389/fcell.2016.00089 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Morillo SM, Escoll P, La HA d, Frade JM (2010) Somatic tetraploidy in specific chick retinal ganglion cells induced by nerve growth factor. Proc Natl Acad Sci U S A 107:109–114CrossRefPubMedGoogle Scholar
  61. 61.
    Peterson SE, Yang AH, Bushman DM, Westra JW, Yung YC, Barral S, Mutoh T, Rehen SK, Chun J (2012) Aneuploid cells are differentially susceptible to caspase-mediated death during embryonic cerebral cortical development. J Neurosci 32:16213–16222CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Potter H (1991) Review and hypothesis: Alzheimer disease and down syndrome--chromosome 21 nondisjunction may underlie both disorders. Am J Human Gen 48:1192–1200Google Scholar
  63. 63.
    Geller LN, Potter H (1999) Chromosome missegregation and trisomy 21 mosaicism in Alzheimer’s disease. Neurobiol Dis 6:167–179CrossRefPubMedGoogle Scholar
  64. 64.
    Iourov IY, Vorsanova SG, Yurov YB (2006) Chromosomal variation in mammalian neuronal cells: known facts and attractive hypotheses. Int Rev Cytol 249:143–191CrossRefPubMedGoogle Scholar
  65. 65.
    Iourov IY, Vorsanova SG, Yurov YB (2008) Chromosomal mosaicism goes global. Mol Cytogen 1:26CrossRefGoogle Scholar
  66. 66.
    Boeras DI, Granic A, Padmanabhan J, Crespo NC, Rojiani AM, Potter H (2008) Alzheimer’s presenilin 1 causes chromosome missegregation and aneuploidy. Neurobiol Aging 29:319–328CrossRefPubMedGoogle Scholar
  67. 67.
    Granic A, Padmanabhan J, Norden M, Potter H (2010) Alzheimer Abeta peptide induces chromosome mis-segregation and aneuploidy, including trisomy 21: requirement for tau and APP. Mol Biol Cell 21:511–520CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lenz D, Mosch B, Bocsi J, Arendt T, Tarnok A (2004) Assessment of DNA replication in central nervous system by laser scanning cytometry. In: Nicolau DV, editor. Imaging, manipulation, and analysis of biomolecules, cells, and tissues II. 27–28 January 2004, San Jose, California, USA, Bellingham, WA, USA. Proc SPIE 5322:146–156CrossRefGoogle Scholar
  69. 69.
    Arendt T, Mosch B, Morawski M (2009) Neuronal aneuploidy in health and disease: a cytomic approach to understand the molecular individuality of neurons. Int J Mol Sci 10:1609–1627CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P et al (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127Google Scholar
  71. 71.
    Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746Google Scholar
  72. 72.
    Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629CrossRefPubMedGoogle Scholar
  73. 73.
    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer: disease: recommendations from the National Institute on Aging—Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC et al (2011) Introduction to the recommendations from the National Institute on Aging–Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:257–262CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al (2010) National Institute on Aging–Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13CrossRefGoogle Scholar
  78. 78.
    Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW et al (2012) National Institute on Aging–Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11CrossRefPubMedGoogle Scholar
  79. 79.
    Morris JC, Heymann A, Mohs RC et al (1989) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39:1159–1165CrossRefPubMedGoogle Scholar
  80. 80.
    Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state (a practical method for grading the state of patients for the clinician). J Psychiatr Res 12:189–198CrossRefPubMedGoogle Scholar
  81. 81.
    Reisberg B, Ferris SH, de Leon MJ, Crook T (1982) The global deterioration scale for assessment of primary degenerative dementia. Am J Psychiatry 139(9):1136–1139CrossRefPubMedGoogle Scholar
  82. 82.
    Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL (1982) A new clinical scale for the staging of dementia. Br J Psychiatry 140:566–572CrossRefPubMedGoogle Scholar
  83. 83.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259CrossRefPubMedGoogle Scholar
  84. 84.
    Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Thal DR, Rub U, Orantes M, Braak H (2002) Phases of a betadeposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800CrossRefPubMedGoogle Scholar
  86. 86.
    Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486CrossRefPubMedGoogle Scholar
  87. 87.
    Evers P, Uylings HB (1997) An optimal antigen retrieval method suitable for different antibodies on human brain tissue stored for several years in formaldehyde fixative. J Neurosci Methods 72:197–207CrossRefPubMedGoogle Scholar
  88. 88.
    Walker JA, Kilroy GE, Xing J, Shewale J, Sinha SK, Batzer MA (2003) Human DNA quantitation using Alu element-based polymerase chain reaction. Anal Biochem 315:122–128CrossRefPubMedGoogle Scholar
  89. 89.
    Houck CM, Rinehart FP, Schmid CW (1979) A ubiquitous family of repeated DNA sequences in the human genome. J Mol Biol 132:289–306CrossRefPubMedGoogle Scholar
  90. 90.
    Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370–379CrossRefPubMedGoogle Scholar
  91. 91.
    Roy-Engel AM, Carroll ML, Vogel E, Garber RK, Nguyen SV, Salem AH, Batzer MA, Deininger PL (2001) Alu insertion polymorphisms for the study of human genomic diversity. Genetics 159:279–290PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Thomas Arendt
    • 1
    Email author
  • Birgit Belter
    • 2
  • Martina K. Brückner
    • 1
  • Uwe Ueberham
    • 1
  • Markus Morawski
    • 1
  • Attila Tarnok
    • 3
  1. 1.Paul Flechsig Institute of Brain ResearchUniversität LeipzigLeipzigGermany
  2. 2.Department of Radiopharmaceutical BiologyInstitute of Radiopharmacy, Forschungszentrum Dresden-RossendorfDresdenGermany
  3. 3.Faculty of MedicineInstitute for Medical Informatics, Statistics and Epidemiology (IMISE), Universität LeipzigLeipzigGermany

Personalised recommendations